A Highly Eccentric Black Hole Merger Detected for the First Time

Credit: RIT

In February 2016, scientists with the Laser Interferometer Gravitational-Wave Observatory (LIGO) confirmed the first-ever detection of a gravitational wave event. Originally predicted by Einstein’s Theory of General Relativity, GWs result from mergers between massive objects – like black holes, neutron stars, and supermassive black holes (SMBHs). Since 2016, dozens of events have been confirmed, opening a new window to the Universe and leading to a revolution in astronomy and cosmology.

In another first, a team of scientists led by the Center for Computational Relativity and Gravitation (CCRG) announced that they may have detected a merger of two black holes with eccentric orbits for the first time. According to the team’s paper, which recently appeared in Nature Astronomy, this potential discovery could explain why some of the black hole mergers detected by the LIGO Scientific Collaboration and the Virgo Collaboration are much heavier than previously expected.

Continue reading “A Highly Eccentric Black Hole Merger Detected for the First Time”

Astronomers Might Have Detected the Background Gravitational Waves of the Universe

Artistic impression of the Double Pulsar system, where two active pulsars orbit each other in just 147 min. The orbital motion of these extremely dense neutrons star causes a number of relativistic effects, including the creation of ripples in spacetime known as gravitational waves. The gravitational waves carry away energy from the systems which shrinks by about 7mm per days as a result. The corresponding measurement agrees with the prediction of general relativity within 0.013%. The picture at high resolution and two alternative versions (1b, 1c) are accessible in the left column. [less] © Michael Kramer/MPIfR

In February 2016, Gravitational Waves (GWs) were detected for the first time in history. This discovery confirmed a prediction made by Albert Einstein over a century ago and triggered a revolution in astronomy. Since then, dozens of GW events have been detected from various sources, ranging from black hole mergers, neutron star mergers, or a combination thereof. As the instruments used for GW astronomy become more sophisticated, the ability to detect more events (and learn more from them) will only increase.

For instance, an international team of astronomers recently detected a series of low-frequency gravitational waves using the International Pulsar Timing Array (IPTA). These waves, they determined, could be the early signs of a background gravitational wave signal (BGWS) caused by pairs of supermassive black holes. The existence of this background is something that astrophysicists have theorized since GWs were first detected, making this a potentially ground-breaking discovery!

Continue reading “Astronomers Might Have Detected the Background Gravitational Waves of the Universe”

The Moon is an Ideal Spot for a Gravitational Wave Observatory

High-resolution view of the lunar surface (JAXA/SELENE)

In the coming years, multiple space agencies will be sending missions (including astronauts) to the Moon’s southern polar region to conduct vital research. In addition to scouting resources in the area (in preparation for the construction of a lunar base) these missions will also investigate the possibility of conducting various scientific investigations on the far side of the Moon.

However, two prominent scientists (Dr. Karan Jani and Prof. Abraham Loeb) recently published a paper where they argue that another kind of astronomy could be conducted on the far side of the Moon – Gravitational Wave astronomy! As part of NASA’s Project Artemis, they explain how a Gravitational-wave Lunar Observatory for Cosmology (GLOC) would be ideal for exploring GW in the richest and most challenging frequencies.

Continue reading “The Moon is an Ideal Spot for a Gravitational Wave Observatory”