In the Far Future, Stellar Flybys Will Completely Dismantle the Solar System

Consumption and disintegration.

Next time you want to be the life of the party—if you’re hanging out with cool nerds that is—just drop that phrase into the conversation. And when they look at you quizzically, just say that’s the eventual fate of the Solar System.

Then adjust your cravat and take another sip of your absinthe.

Continue reading “In the Far Future, Stellar Flybys Will Completely Dismantle the Solar System”

Extremely Hot Exoplanets Can Have Extreme Weather, Like Clouds of Aluminum Oxide and Titanium Rain

Thanks to the success of the Kepler mission, we know that there are multitudes of exoplanets of a type called “Hot Jupiters.” These are gas giants that orbit so close to their stars that they reach extremely high temperatures. They also have exotic atmospheres, and those atmospheres contain a lot of strangeness, like clouds made of aluminum oxide, and titanium rain.

A team of astronomers has created a cloud atlas for Hot Jupiters, detailing which type of clouds and atmospheres we’ll see when we observe different Hot Jupiters.

Continue reading “Extremely Hot Exoplanets Can Have Extreme Weather, Like Clouds of Aluminum Oxide and Titanium Rain”

Giant Planets Could Form Around Tiny Stars in Just a Few Thousand Years

M-type (red dwarf) stars are cooler, low-mass, low-luminosity objects that make up the vast majority of stars in our Universe – accounting for 85% of stars in the Milky Way galaxy alone. In recent years, these stars have proven to be a treasure trove for exoplanet hunters, with multiple terrestrial (aka. Earth-like) planets confirmed around the Solar System’s nearest red dwarfs.

But what is even more surprising is the fact that some red dwarfs have been found to have planets that are comparable in size and mass to Jupiter orbiting them. A new study conducted by a team of researchers from the University of Central Lancashire (UCLan) has addressed the mystery of how this could be happening. In essence, their work shows that gas giants only take a few thousand years to form.

Continue reading “Giant Planets Could Form Around Tiny Stars in Just a Few Thousand Years”

“Super-Puff” Exoplanets Aren’t Like Anything We’ve Got in the Solar System

The study of extrasolar planets has really exploded in recent years. Currently, astronomers have been able to confirm the existence of 4,104 planets beyond our Solar System, with another 4900 awaiting confirmation. The study of these many planets has revealed things about the range of possible planets in our Universe and taught us that there are many for which there are no analogs in our Solar System.

For example, thanks to new data obtained by the Hubble Space Telescope, astronomers have learned more about a new class of exoplanet known as “super-puff” planets. Planets in this class are essentially young gas giants that are comparable in size to Jupiter but have masses that are just a few times greater than that of Earth. This results in their atmospheres having the density of cotton candy, hence the delightful nickname!

Continue reading ““Super-Puff” Exoplanets Aren’t Like Anything We’ve Got in the Solar System”

A Red Dwarf Star Has a Jupiter-Like Planet. So Massive it Shouldn’t Exist, and Yet, There It Is

Thanks to the Kepler mission and other efforts to find exoplanets, we’ve learned a lot about the exoplanet population. We know that we’re likely to find super-Earths and Neptune-mass exoplanets orbiting low-mass stars, while larger planets are found around more massive stars. This lines up well with the core accretion theory of planetary formation.

But not all of our observations comply with that theory. The discovery of a Jupiter-like planet orbiting a small red dwarf means our understanding of planetary formation might not be as clear as we thought. A second theory of planetary formation, called the disk instability theory, might explain this surprising discovery.

Continue reading “A Red Dwarf Star Has a Jupiter-Like Planet. So Massive it Shouldn’t Exist, and Yet, There It Is”

French Scientists Claim to Have Created Metallic Hydrogen

Scientists have long speculated that at the heart of a gas giant, the laws of material physics undergo some radical changes. In these kinds of extreme pressure environments, hydrogen gas is compressed to the point that it actually becomes a metal. For years, scientists have been looking for a way to create metallic hydrogen synthetically because of the endless applications it would offer.

At present, the only known way to do this is to compress hydrogen atoms using a diamond anvil until they change their state. And after decades of attempts (and 80 years since it was first theorized), a team of French scientists may have finally created metallic hydrogen in a laboratory setting. While there is plenty of skepticism, there are many in scientific community who believe this latest claim could be true.

Continue reading “French Scientists Claim to Have Created Metallic Hydrogen”

Uranus’ Rings are Surprisingly Bright in Thermal Emissions

During the late 1970s, scientists made a rather interesting discovery about the gas giants of the Solar System. Thanks to ongoing observations using improved optics, it was revealed that gas giants like Uranus – and not just Saturn – have ring systems about them. The main difference is, these ring systems are not easily visible from a distance using conventional optics and require exceptional timing to see light being reflected off of them.

Another way to study them is to observe their planet in infrared or radio wavelengths. This was recently demonstrated by a team of astronomers who conducted observations of Uranus using the Atacama Large Millimeter/submillimeter Array (ALMA) and the Very Large Telescope (VLT). In addition to obtaining temperature readings from the rings, they confirmed what many scientists have suspected about them for some time.

Continue reading “Uranus’ Rings are Surprisingly Bright in Thermal Emissions”

New Insights Into What Might Have Smashed Uranus Over Onto its Side

Uranus

The gas/ice giant Uranus has long been a source of mystery to astronomers. In addition to presenting some thermal anomalies and a magnetic field that is off-center, the planet is also unique in that it is the only one in the Solar System to rotate on its side. With an axial tilt of 98°, the planet experiences radical seasons and a day-night cycle at the poles where a single day and night last 42 years each.

Thanks to a new study led by researchers from Durham University, the reason for these mysteries may finally have been found. With the help of NASA researchers and multiple scientific organizations, the team conducted simulations that indicated how Uranus may have suffered a massive impact in its past. Not only would this account for the planet’s extreme tilt and magnetic field, it would also explain why the planet’s outer atmosphere is so cold.

Continue reading “New Insights Into What Might Have Smashed Uranus Over Onto its Side”

Triton’s Arrival was Chaos for the Rest of Neptune’s Moons

The study of the Solar System’s many moons has revealed a wealth of information over the past few decades. These include the moons of Jupiter – 69 of which have been identified and named – Saturn (which has 62) and Uranus (27). In all three cases, the satellites that orbit these gas giants have prograde, low-inclination orbits. However, within the Neptunian system, astronomers noted that the situation was quite different.

Compared to the other gas giants, Neptune has far fewer satellites, and most of the system’s mass is concentrated within a single satellite that is believed to have been captured (i.e. Triton). According to a new study by a team from the Weizmann Institute of Science in Israel and the Southwest Research Institute (SwRI) in Boulder, Colorado, Neptune may have once had a more massive systems of satellites, which the arrival of Triton may have disrupted.

The study, titled “Triton’s Evolution with a Primordial Neptunian Satellite System“, recently appeared in The Astrophysical Journal. The research team consisted of Raluca Rufu, an astrophysicist and geophysicist from the Weizmann Institute, and Robin M. Canup – the Associate VP of the SwRI. Together, they considered models of a primordial Neptunian system, and how it may have changed thanks to the arrival of Triton.

Neptune and its large moon Triton as seen by Voyager 2 on August 28th, 1989. Credit: NASA

For many years, astronomers have been of the opinion that Triton was once a dwarf planet that was kicked out of the Kuiper Belt and captured by Neptune’s gravity. This is based on its retrograde and highly-inclined orbit (156.885° to Neptune’s equator), which contradicts current models of how gas giants and their satellites form. These models suggest that as giant planets accrete gas, their moons form from a surrounding debris disk.

Consistent with the other gas giants, the largest of these satellites would have prograde, regular orbits that are not particularly inclined relative to their planet’s equator (typically less than 1°). In this respect, Triton is believed to have once been part of a binary made up of two Trans-Neptunian Objects (TNOs). When they swung past Neptune, Triton would have been captured by its gravity and gradually fell into its current orbit.

As Dr. Rufu and Dr. Canup state in their study, the arrival of this massive satellite would have likely caused a lot of disruption in the Neptunian system and affected its evolution. This consisted of them exploring how interactions – like scattering or collisions – between Triton and Neptune’s prior satellites would have modified Triton’s orbit and mass, as well as the system at large. As they explain:

“We evaluate whether the collisions among the primordial satellites are disruptive enough to create a debris disk that would accelerate Triton’s circularization, or whether Triton would experience a disrupting impact first. We seek to find the mass of the primordial satellite system that would yield the current architecture of the Neptunian system.”

Montage of Neptune’s largest moon, Triton and the planet Neptune showing the moon’s sublimating south polar cap (bottom) and enigmatic “cantaloupe terrain”. Credit: NASA

To test how the Neptunian system could have evolved, they considered different types of primordial satellite systems. This included one that was consistent with Uranus’ current system, made up of prograde satellites with a similar mass ration as Uranus’ largest moons – Ariel, Umbriel, Titania and Oberon – as well as one that was either more or less massive. They then conducted simulations to determine how Triton’s arrival would have altered these systems.

These simulations were based on disruption scaling laws which considered how non-hit-and-run impacts between Triton and other bodies would have led to a redistribution of matter in the system. What they found, after 200 simulations, was that a system that had a mass ratio that was similar to the current Uranian system (or smaller) would have been most likely to produce the current Neptunian system. As they state:

“We find that a prior satellite system with a mass ratio similar to the Uranian system or smaller has a substantial likelihood of reproducing the current Neptunian system, while a more massive system has a low probability of leading to the current configuration.”

They also found that the interaction of Triton with an earlier satellite system also offers a potential explanation for how its initial orbit could have been decreased fast enough to preserve the orbits of small irregular satellites. These Nereid-like bodies would have otherwise been kicked out of their orbits as tidal forces between Neptune and Triton caused Triton to assume its current orbit.

The moons of Uranus and Neptune as imaged during the 2011 opposition season. Credit: Rolf Wahl Olsen.

Ultimately, this study not only offers a possible explanation as to why Neptune’s system of satellites differs from those of other gas giants; it also indicates that Neptune’s proximity to the Kuiper Belt is what is responsible. At one time, Neptune may have had a system of moons that were very much like those of Jupiter, Saturn, and Uranus. But since it is well-situated to pick up dwarf planet-sized objects that were kicked out of the Kuiper Belt, this changed.

Looking to the future, Rufu and Canup indicate that additional studies are needed in order to shed light on Triton’s early evolution as a Neptunian satellite. Essentially, there are still unanswered questions concerning the effects the system of pre-existing satellites had on Triton, and how stable its irregular prograde satellites were.

These findings were also presented by Dr, Rufu and Dr. Canup during the 48th Lunar and Planetary Science Conference, which took place in The Woodlands, Texas, this past March.

Further Reading: The Astronomical Journal, USRA