Another Monster Black Hole Found in the Milky Way

At the center of the Milky Way Galaxy resides the Supermassive Black Hole (SMBH) known as Sagittarius A*. This tremendous black hole measures an estimated 44 million km in diameter, and has the mass of over 4 million Suns. For decades, astronomers have understood that most larger galaxies have an SMBH at their core, and that these range from hundreds of thousands to billions of Solar Masses.

However, new research performed by a team of researchers from Keio University, Japan, has made a startling find. According to their study, the team found evidence of a mid-sized black hole in a gas cluster near the center of the Milky Way Galaxy. This unexpected find could offer clues as to how SMBHs form, which is something that astronomers have been puzzling over for some time.

The study, titled “Millimetre-wave Emission from an Intermediate-mass Black Hole Candidate in the Milky Way“, recently appeared in the journal Nature Astronomy. Led by Tomoharu Oka, a researcher from the Department of Physics and the School of Fundamental Science and Technology at Keio University, the team studied CO–0.40–0.22, a high-velocity compact gas cloud near the center of our galaxy.

This artist’s concept shows a galaxy with a supermassive black hole at its core. The black hole is shooting out jets of radio waves.Image credit: NASA/JPL-Caltech

This compact dust cloud, which has been a source of fascination to astronomers for years, measures over 1000 AU in diameter and is located about 200 light-years from the center of our galaxy. The reason for this interest has to do with the fact that gases in this cloud – which include hydrogen cyanide and carbon monoxide – move at vastly different speeds, which is something unusual for a cloud of interstellar gases.

In the hopes of better understanding this strange behavior, the team originally observed CO–0.40–0.22 using the 45-meter radio telescope at the Nobeyama Radio Observatory in Japan. This began in January of 2016, when the team noticed that the cloud had an elliptical shape that consisted of two components. These included a compact but low density component with varying velocities, and a dense component (10 light years long) with little variation.

After conducting their initial observations, the team then followed up with observations from the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. These confirmed the structure of the cloud and the variations in speed that seemed to accord with density. In addition, they observed the presence of radio waves (similar to those generated by Sagittarius A*) next to the dense region. As they state in their study:

“Recently, we discovered a peculiar molecular cloud, CO–0.40–0.22, with an extremely broad velocity width, near the center of our Milky Way galaxy. Based on the careful analysis of gas kinematics, we concluded that a compact object with a mass of about 105 [Solar Masses] is lurking in this cloud.”

Change image showing the area around Sgr A*, where low, medium, and high-energy X-rays are red, green, and blue, respectively. The inset box shows X-ray flares from the region close to Sgr A*. NASA: NASA/SAO/CXC

The team also ran a series of computer models to account for these strange behaviors, which indicated that the most likely cause was a black hole. Given its mass – 100,000 Solar Masses, or roughly 500 times smaller than that of Sagittarius A* – this meant that the black hole was intermediate in size. If confirmed, this discovery will constitute the second-largest black hole to be discovered within the Milky Way.

This represents something of a first for astronomers, since the vast majority of black holes discovered to date have been either small or massive. Studies that have sought to locate Intermediate Black Holes (IMBHs), on the other hand, have found very little evidence of them. Moreover, these findings could account for how SMBHs form at the center of larger galaxies.

In the past, astronomers have conjectured that SMBHs are formed by the merger of smaller black holes, which implied the existence of intermediate ones. As such, the discovery of an IMBH would constitute the first piece of evidence for this hypothesis. As Brooke Simmons, a professor at the University of California in San Diego, explained in an interview with The Guardian:

“We know that smaller black holes form when some stars die, which makes them fairly common. We think some of those black holes are the seeds from which the much larger supermassive black holes grow to at least a million times more massive. That growth should happen in part by mergers with other black holes and in part by accretion of material from the part of the galaxy that surrounds the black hole.

“Astrophysicists have been collecting observational evidence for both stellar mass black holes and supermassive black holes for decades, but even though we think the largest ones grow from the smallest ones, we’ve never really had clear evidence for a black hole with a mass in between those extremes.”

Artist’s impression of two merging black holes, which has been theorized to be a source of gravitational waves. Credit: Bohn, Throwe, Hébert, Henriksson, Bunandar, Taylor, Scheel/SXS

Further studies will be needed to confirm the presence of an IMBH at the center of CO–0.40–0.22. Assuming they succeed, we can expect that astrophyiscists will be monitoring it for some time to determine how it formed, and what it’s ultimate fate will be. For instance, it is possible that it is slowly drifting towards Sagittarius A* and will eventually merge with it, thus creating an even more massive SMBH at the center of our galaxy!

Assuming human beings are around to detect that merger, its fair to say that it won’t go unnoticed. The gravitational waves alone are sure to be impressive!

Further Reading: Nature Astronomy

Our Galaxy’s Supermassive Black Hole is a Sloppy Eater

Like most galaxies, our Milky Way has a dark monster in its middle: an enormous black hole with the mass of 4 million Suns inexorably dragging in anything that comes near. But even at this scale, a supermassive black hole like Sgr A* doesn’t actually consume everything that it gets its gravitational claws on — thanks to the Chandra X-ray Observatory, we now know that our SMB is a sloppy eater and most of the material it pulls in gets spit right back out into space.

(Perhaps it should be called the Cookie Monster in the middle.*)

New Chandra images of supermassive black hole Sagittarius A*, located about 26,000 light-years from Earth, indicate that less than 1% of the gas initially within its gravitational grasp ever reaches the event horizon. Instead, much of the gas is ejected before it gets near the event horizon and has a chance to brighten in x-ray emissions.

The new findings are the result of one of the longest campaigns ever performed with Chandra, with observations made over 5 weeks’ time in 2012.

Read more: Chandra Stares Deep into the Heart of Sagittarius A*

“This new Chandra image is one of the coolest I’ve ever seen,” said study co-author Sera Markoff of the University of Amsterdam in the Netherlands. “We’re watching Sgr A* capture hot gas ejected by nearby stars, and funnel it in towards its event horizon.”

As it turns out, the wholesale ejection of gas is necessary for our resident supermassive black hole to capture any at all. It’s a physics trade-off.

“Most of the gas must be thrown out so that a small amount can reach the black hole”, said co-author Feng Yuan of Shanghai Astronomical Observatory in China. “Contrary to what some people think, black holes do not actually devour everything that’s pulled towards them. Sgr A* is apparently finding much of its food hard to swallow.”

X-ray image of Sgr A*
X-ray image of Sgr A*

If it seems odd that such a massive black hole would have problems slurping up gas, there are a couple of reasons for this.

One is pure Newtonian physics: to plunge over the event horizon, material captured — and subsequently accelerated — by a black hole must first lose heat and momentum. The ejection of the majority of matter allows this to occur.

The other is the nature of the environment in the black hole’s vicinity. The gas available to Sgr A* is very diffuse and super-hot, so it is hard for the black hole to capture and swallow it. Other more x-ray-bright black holes that power quasars and produce huge amounts of radiation have much cooler and denser gas reservoirs.

Illustration of gas cloud G2 approaching Sgr A* (ESO/MPE/M.Schartmann/J.Major)
Illustration of gas cloud G2 approaching Sgr A* (ESO/MPE/M.Schartmann/J.Major)

Located relatively nearby, Sgr A* offers scientists an unprecedented view of the feeding behaviors of such an exotic astronomical object. Currently a gas cloud several times the mass of Earth, first spotted in 2011, is moving closer and closer to Sgr A* and is expected to be ripped apart and partially consumed in the coming weeks. Astronomers are eagerly awaiting the results.

“Sgr A* is one of very few black holes close enough for us to actually witness this process,” said Q. Daniel Wang of the University of Massachusetts at Amherst, who led the study.

Watch Black Holes: Monsters of the Cosmos

Source: Chandra press release. Read the team’s paper here.

Image credits: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI


*Any resemblance of Sgr A* to an actual Muppet, real or fictitious, is purely coincidental.

Galactic Gas Cloud Could Help Spot Hidden Black Holes

The heart of our Milky Way galaxy is an exotic place. It’s swarming with gigantic stars, showered by lethal blasts of high-energy radiation and a veritable cul-de-sac for the most enigmatic stellar corpses known to science: black holes. And at the center of the whole mélange is the granddaddy of all the black holes in the galaxy — Sagittarius A*,  a supermassive monster with 4 million times more mass than the Sun packed into an area smaller than the orbit of Mercury.

Sgr A* dominates the core of the Milky Way with its powerful gravity, trapping giant stars into breakneck orbits and actively feeding on anything that comes close enough. Recently astronomers have been watching the movement of a large cloud of gas that’s caught in the pull of Sgr A* — they’re eager to see what exactly will happen once the cloud (designated G2) enters the black hole’s dining room… it will, in essence, be the first time anyone watches a black hole eat.

But before the dinner bell rings — estimated to be sometime this September — the cloud still has to cover a lot of space. Some scientists are now suggesting that G2’s trip through the crowded galactic nucleus could highlight the locations of other smaller black holes in the area, revealing their hiding places as it passes.

In a new paper titled “G2 can Illuminate the Black Hole Population near the Galactic Center” researchers from Columbia University in New York City and the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Massachusetts propose that G2, a cloud of cool ionized gas over three times more massive than Earth, will likely encounter both neutron stars and other black holes on its way around (and/or into) SMBH Sgr A*.

Estimated number of stellar-mass black holes to be encountered by G2 along its trajectory (Bartos et al.)
Estimated number of stellar-mass black holes to be encountered by G2 along its trajectory (Bartos et al.)

The team notes that there are estimated to be around 20,000 stellar-mass black holes and about as many neutron stars in the central parsec of the galaxy. (A parsec is equal to 3.26 light-years, or 30.9 trillion km. In astronomical scale it’s just over 3/4 the way to the nearest star from the Sun.) In addition there may also be an unknown number of intermediate-mass black holes lurking within the same area.

These ultra-dense stellar remains are drawn to the center region of the galaxy due to the effects of dynamical friction — drag, if you will — as they move through the interstellar material.

Of course, unless black holes are feeding and actively throwing out excess gobs of hot energy and matter due to their sloppy eating habits, they are very nearly impossible to find. But as G2 is observed moving along its elliptical path toward Sgr A*, it could very well encounter a small number of stellar- and intermediate-mass black holes and neutron stars. According to the research team, such interactions may be visible with X-ray spotting spacecraft like NASA’s Chandra and NuSTAR.

Read more: Chandra Stares Deep Into the Heart of Sagittarius A*

NuSTAR X-ray image of a flare emitted by Sgr A* in July 2012 (NASA/JPL-Caltech)
NuSTAR X-ray image of a flare emitted by Sgr A* in July 2012 (NASA/JPL-Caltech)

The chances of G2 encountering black holes and interacting with them in such a way as to produce bright enough x-ray flares that can be detected depends upon a lot of variables, like the angles of interaction, the relative velocities of the gas cloud and black holes, the resulting accretion rates of in-falling cloud matter, and the temperature of the accretion material. In addition, any observations must be made at the right time and for long enough a duration to capture an interaction (or possibly multiple interactions simultaneously) yet also be able to discern them from any background X-ray sources.

Still, according to the researchers such observations would be important as they could provide valuable information on galactic evolution, and shed further insight into the behavior of black holes.

Read the full report here, and watch an ESO news video about the anticipated behavior of the G2 gas cloud around the SMBH Sgr A* below:

This research was conducted by Imre Bartos, Zoltán Haiman, and Bence Kocsis of Columbia University and Szabolcs Márka of the Harvard-Smithsonian Center for Astrophysics.