Even the Quiet Supermassive Black Holes are Blasting out Neutrinos and Gamma Rays

Is there anywhere in the Universe where we can escape from radiation? Certainly not here on Earth. And not in space itself, which is filled with diffuse radiation in the form of gamma rays and neutrinos. Scientists have struggled to explain where all those gamma rays and neutrinos come from. A trio of researchers is proposing a source for all that radiation in a new paper: resting black holes.

Continue reading “Even the Quiet Supermassive Black Holes are Blasting out Neutrinos and Gamma Rays”

Finally an Answer to why Gamma Rays are Coming From Seemingly Empty Space

Gamma rays strike Earth from all directions of the sky. Our planet is bathed in a diffuse glow of high-energy photons. It doesn’t affect us much, and we don’t really notice it, because our atmosphere is very good at absorbing gamma rays. It’s so good that we didn’t notice cosmic gamma rays until the 1960s when gamma-ray detectors were launched into space to look for signs of atomic weapons tests. Even then, what we noticed were intense flashes of gamma rays known as gamma ray bursts.

Continue reading “Finally an Answer to why Gamma Rays are Coming From Seemingly Empty Space”

Astronomers Locate the Source of High-Energy Cosmic Rays

Roughly a century ago, scientists began to realize that some of the radiation we detect in Earth’s atmosphere is not local in origin. This eventually gave rise to the discovery of cosmic rays, high-energy protons and atomic nuclei that have been stripped of their electrons and accelerated to relativistic speeds (close to the speed of light). However, there are still several mysteries surrounding this strange (and potentially lethal) phenomenon.

This includes questions about their origins and how the main component of cosmic rays (protons) are accelerated to such high velocity. Thanks to new research led by the University of Nagoya, scientists have quantified the amount of cosmic rays produced in a supernova remnant for the first time. This research has helped resolve a 100-year mystery and is a major step towards determining precisely where cosmic rays come from.

Continue reading “Astronomers Locate the Source of High-Energy Cosmic Rays”

Jupiter Could Make an Ideal Dark Matter Detector

So, you want to find dark matter, but you don’t know where to look? A giant planet might be exactly the kind of particle detector you need! Luckily, our solar system just happens to have a couple of them available, and the biggest and closest is Jupiter. Researchers Rebecca Leane (Stanford) and Tim Linden (Stockholm) released a paper this week describing how the gas giant just might hold the key to finding the elusive dark matter.

Continue reading “Jupiter Could Make an Ideal Dark Matter Detector”

A new way to see Inside Neutron Stars

Imagine trying to study an object light-years away that is less than 20 kilometers in diameter. The object is so dense that it’s made of material that can’t exist naturally on Earth. This is the challenge astronomers face when studying neutron stars, so they have to devise ingenious ways to do it. Recently a team figured out how to study them by using the power of resonance.

Continue reading “A new way to see Inside Neutron Stars”

Past Supernovae Could be Written Into Tree Rings

When stars reach the end of their lifespan, they undergo gravitational collapse at their cores. The type of explosion that results is one of the most awesome astronomical events imaginable and (on rare occasions) can even be seen with the naked eye. The last time this occurred was in 1604 when a Type Ia supernova took place over 20,000 light-years away – commonly-known as Kepler’s Supernova (aka. SN1604)

Given the massive amounts of radiation they release, past supernovae are believed to have played a role in the evolution of our planet and terrestrial life. According to new research by CU Boulder geoscientist Robert Brakenridge, these same supernovae may have left traces in our planet’s biology and geology. These findings could have implications given fears that Betelgeuse might be on the verge of going supernova.

Continue reading “Past Supernovae Could be Written Into Tree Rings”

The Destruction of Dark Matter isn’t Causing Extra Radiation at the Core of the Milky Way

There are times when it feels like dark matter is just toying with us. Just as we gather evidence that hints at one of its properties, new evidence suggests otherwise. So it is with a recent work looking at how dark matter might behave in the center of our galaxy.

Continue reading “The Destruction of Dark Matter isn’t Causing Extra Radiation at the Core of the Milky Way”

New Simulation Shows Exactly What Dark Matter Would Look Like If We Could See It

How do you study something invisible? This is a challenge that faces astronomers who study dark matter. Although dark matter comprises 85% of all matter in the universe, it doesn’t interact with light. It can only be seen through the gravitational influence it has on light and other matter. To make matters worse, efforts to directly detect dark matter on Earth have been unsuccessful so far.

Continue reading “New Simulation Shows Exactly What Dark Matter Would Look Like If We Could See It”

Gamma-Ray Telescopes Can Measure the Diameters of Other Stars

In astronomy, the sharpness of your image depends upon the size of your telescope. When Galileo and others began to view the heavens with telescopes centuries ago, it changed our understanding of the cosmos. Objects such as planets, seen as points of light with the naked eye, could now be seen as orbs with surface features. But even under these early telescopes, stars still appeared as a point of light. While Galileo could see Jupiter or Saturn’s size, he had no way to know the size of a star.

Continue reading “Gamma-Ray Telescopes Can Measure the Diameters of Other Stars”