The Planet Jupiter

Jupiter and Io. Image Credit: NASA/JPL

Ever since the invention of the telescope four hundred years ago, astronomers have been fascinated by the gas giant known as Jupiter. Between its constant, swirling clouds, its many, many moons, and its Giant Red Spot, there are many things about this planet that are both delightful and fascinating.

But perhaps the most impressive feature about Jupiter is its sheer size. In terms of mass, volume, and surface area, Jupiter is the biggest planet in our Solar System by a wide margin. And since people have been aware of its existence for thousands of years, it has played an active role in the cosmological systems many cultures. But just what makes Jupiter so massive, and what else do we know about it?

Size, Mass and Orbit:

Jupiter’s mass, volume, surface area and mean circumference are 1.8981 x 1027 kg, 1.43128 x 1015 km3, 6.1419 x 1010 km2, and 4.39264 x 105 km respectively. To put that in perspective, Jupiter diameter is roughly 11 times that of Earth, and 2.5 the mass of all the other planets in the Solar System combined.

But, being a gas giant, it has a relatively low density – 1.326 g/cm3 – which is less than one quarter of Earth’s. This means that while Jupiter’s volume is equivalent to about 1,321 Earths, it is only 318 times as massive. The low density is one way scientists are able to determine that it is made mostly of gases, though the debate still rages on what exists at its core (see below).

Jupiter orbits the Sun at an average distance (semi-major axis) of 778,299,000 km (5.2 AU), ranging from 740,550,000 km (4.95 AU) at perihelion and 816,040,000 km (5.455 AU) at aphelion. At this distance, Jupiter takes 11.8618 Earth years to complete a single orbit of the Sun. In other words, a single Jovian year lasts the equivalent of 4,332.59 Earth days.

However, Jupiter’s rotation is the fastest of all the Solar System’s planets, completing a rotation on its axis in slightly less than ten hours (9 hours, 55 minutes and 30 seconds to be exact. Therefore, a single Jovian year lasts 10,475.8 Jovian solar days. This orbital period is two-fifths that of Saturn, which means that the two largest planets in our Solar System form a 5:2 orbital resonance.

Structure and Composition:

Jupiter is composed primarily of gaseous and liquid matter. It is the largest of the gas giants, and like them, is divided between a gaseous outer atmosphere and an interior that is made up of denser materials. It’s upper atmosphere is composed of about 88–92% hydrogen and 8–12% helium by percent volume of gas molecules, and approx. 75% hydrogen and 24% helium by mass, with the remaining one percent consisting of other elements.

This cut-away illustrates a model of the interior of Jupiter, with a rocky core overlaid by a deep layer of liquid metallic hydrogen. Credit: Kelvinsong/Wikimedia Commons
This cut-away illustrates a model of the interior of Jupiter, with a rocky core overlaid by a deep layer of liquid metallic hydrogen. Credit: Kelvinsong/Wikimedia Commons

The atmosphere contains trace amounts of methane, water vapor, ammonia, and silicon-based compounds as well as trace amounts of benzene and other hydrocarbons. There are also traces of carbon, ethane, hydrogen sulfide, neon, oxygen, phosphine, and sulfur. Crystals of frozen ammonia have also been observed in the outermost layer of the atmosphere.

The interior contains denser materials, such that the distribution is roughly 71% hydrogen, 24% helium and 5% other elements by mass. It is believed that Jupiter’s core is a dense mix of elements – a surrounding layer of liquid metallic hydrogen with some helium, and an outer layer predominantly of molecular hydrogen. The core has also been described as rocky, but this remains unknown as well.

In 1997, the existence of the core was suggested by gravitational measurements, indicating a mass of from 12 to 45 times the Earth’s mass, or roughly 4%–14% of the total mass of Jupiter. The presence of a core is also supported by models of planetary formation that indicate how a rocky or icy core would have been necessary at some point in the planet’s history in order to collect all of its hydrogen and helium from the protosolar nebula.

However, it is possible that this core has since shrunk due to convection currents of hot, liquid, metallic hydrogen mixing with the molten core. This core may even be absent now, but a detailed analysis is needed before this can be confirmed. The Juno mission, which launched in August 2011 (see below), is expected to provide some insight into these questions, and thereby make progress on the problem of the core.

The temperature and pressure inside Jupiter increase steadily toward the core. At the “surface”, the pressure and temperature are believed to be 10 bars and 340 K (67 °C, 152 °F). At the “phase transition” region, where hydrogen becomes metallic, it is believed the temperature is 10,000 K (9,700 °C; 17,500 °F) and the pressure is 200 GPa. The temperature at the core boundary is estimated to be 36,000 K (35,700 °C; 64,300 °F) and the interior pressure at roughly 3,000–4,500 GPa.

Jupiter’s Moons:

The Jovian system currently includes 67 known moons. The four largest are known as the Galilean Moons, which are named after their discoverer, Galileo Galilei. They include: Io, the most volcanically active body in our Solar System; Europa, which is suspected of having a massive subsurface ocean; Ganymede, the largest moon in our Solar System; and Callisto, which is also thought to have a subsurface ocean and features some of the oldest surface material in the Solar System.

Then there’s the Inner Group (or Amalthea group), which is made up of four small moons that have diameters of less than 200 km, orbit at radii less than 200,000 km, and have orbital inclinations of less than half a degree. This groups includes the moons of Metis, Adrastea, Amalthea, and Thebe. Along with a number of as-yet-unseen inner moonlets, these moons replenish and maintain Jupiter’s faint ring system.

Jupiter also has an array of Irregular Satellites, which are substantially smaller and have more distant and eccentric orbits than the others. These moons are broken down into families that have similarities in orbit and composition, and are believed to be largely the result of collisions from large objects that were captured by Jupiter’s gravity.

Illustration of Jupiter and the Galilean satellites. Credit: NASA
Illustration of Jupiter and the Galilean satellites. Credit: NASA

Atmosphere and Storms:

Much like Earth, Jupiter experiences auroras near its northern and southern poles. But on Jupiter, the auroral activity is much more intense and rarely ever stops. The intense radiation, Jupiter’s magnetic field, and the abundance of material from Io’s volcanoes that react with Jupiter’s ionosphere create a light show that is truly spectacular.

Jupiter also experiences violent weather patterns. Wind speeds of 100 m/s (360 km/h) are common in zonal jets, and can reach as high as 620 kph (385 mph). Storms form within hours and can become thousands of km in diameter overnight. One storm, the Great Red Spot, has been raging since at least the late 1600s. The storm has been shrinking and expanding throughout its history; but in 2012, it was suggested that the Giant Red Spot might eventually disappear.

Jupiter is perpetually covered with clouds composed of ammonia crystals and possibly ammonium hydrosulfide. These clouds are located in the tropopause and are arranged into bands of different latitudes, known as “tropical regions”. The cloud layer is only about 50 km (31 mi) deep, and consists of at least two decks of clouds: a thick lower deck and a thin clearer region.

There may also be a thin layer of water clouds underlying the ammonia layer, as evidenced by flashes of lightning detected in the atmosphere of Jupiter, which would be caused by the water’s polarity creating the charge separation needed for lightning. Observations of these electrical discharges indicate that they can be up to a thousand times as powerful as those observed here on the Earth.

A color composite image of the June 3rd Jupiter impact flash. Credit: Anthony Wesley of Broken Hill, Australia.
A color composite image of the June 3rd Jupiter impact flash. Credit: Anthony Wesley

Historical Observations of the Planet:

As a planet that can be observed with the naked eye, humans have known about the existence of Jupiter for thousands of years. It has therefore played a vital role in the mythological and astrological systems of many cultures. The first recorded mentions of it date back to the Babylon Empire of the 7th and 8th centuries BCE.

In the 2nd century, the Greco-Egyptian astronomer Ptolemy constructed his famous geocentric planetary model that contained deferents and epicycles to explain the orbit of Jupiter relative to the Earth (i.e. retrograde motion). In his work, the Almagest, he ascribed an orbital period of 4332.38 days to Jupiter (11.86 years).

In 499, Aryabhata – a mathematician-astronomer from the classical age of India – also used a geocentric model to estimate Jupiter’s period as 4332.2722 days, or 11.86 years. It has also been ventured that the Chinese astronomer Gan De discovered Jupiter’s moons in 362 BCE without the use of instruments. If true, it would mean that Galileo was not the first to discovery the Jovian moons two millennia later.

In 1610, Galileo Galilei was the first astronomer to use a telescope to observe the planets. In the course of his examinations of the outer Solar System, he discovered the four largest moons of Jupiter (now known as the Galilean Moons). The discovery of moons other than Earth’s was a major point in favor of Copernicus’ heliocentric theory of the motions of the planets.

The first star party? Galileo shows of the sky in Saint Mark's square in Venice. Note the lack of adaptive optics. (Illustration in the Public Domain).
Galileo shows of the sky in Saint Mark’s square in Venice. Note the lack of adaptive optics. Credit: Public Domain

During the 1660s, Cassini used a new telescope to discover Jupiter’s spots and colorful bands and observed that the planet appeared to be an oblate spheroid. By 1690, he was also able to estimate the rotation period of the planet and noticed that the atmosphere undergoes differential rotation. In 1831, German astronomer Heinrich Schwabe produced the earliest known drawing to show details of the Great Red Spot.

In 1892, E. E. Barnard observed a fifth satellite of Jupiter using the refractor telescope at the Lick Observatory in California. This relatively small object was later named Amalthea, and would be the last planetary moon to be discovered directly by visual observation.

In 1932, Rupert Wildt identified absorption bands of ammonia and methane in the spectra of Jupiter; and by 1938, three long-lived anticyclonic features termed “white ovals” were observed. For several decades, they remained as separate features in the atmosphere, sometimes approaching each other but never merging. Finally, two of the ovals merged in 1998, then absorbed the third in 2000, becoming Oval BA.

Beginning in the 1950s, radiotelescopic research of Jupiter began. This was due to astronomers Bernard Burke and Kenneth Franklin’s detection of radio signals coming from Jupiter in 1955. These bursts of radio waves, which corresponded to the rotation of the planet, allowed Burke and Franklin to refine estimates of the planet’s rotation rate.

Infrared image of Jupiter from SOFIA’s First Light flight composed of individual images at wavelengths of 5.4 (blue), 24 (green) and 37 microns (red) made by Cornell University’s FORCAST camera. A recent visual-wavelength picture of approximately the same side of Jupiter is shown for comparison. The white stripe in the infrared image is a region of relatively transparent clouds through which the warm interior of Jupiter can be seen. (Visual image credit: Anthony Wesley)
Infrared image of Jupiter from SOFIA’s First Light flight composed of individual images at wavelengths made by Cornell University’s FORCAST camera. Credit: Anthony Wesley/Cornell University

Over time, scientists discovered that there were three forms of radio signals transmitted from Jupiter – decametric radio bursts, decimetric radio emissions, and thermal radiation. Decametric bursts vary with the rotation of Jupiter, and are influenced by the interaction of Io with Jupiter’s magnetic field.

Decimetric radio emissions – which originate from a torus-shaped belt around Jupiter’s equator – are caused by cyclotronic radiation from electrons that are accelerated in Jupiter’s magnetic field. Meanwhile, thermal radiation is produced by heat in the atmosphere of Jupiter. Visualizations of Jupiter using radiotelescopes have allowed astronomers to learn much about its atmosphere, thermal properties and behavior.

Exploration:

Since 1973, a number of automated spacecraft have been sent to the Jovian system and performed planetary flybys that brought them within range of the planet. The most notable of these was Pioneer 10, the first spacecraft to get close enough to send back photographs of Jupiter and its moons. Between this mission and Pioneer 11, astronomers learned a great deal about the properties and phenomena of this gas giant.

Artist impression of Pioneer 10 at Jupiter. Image credit: NASA/JPL
Artist impression of Pioneer 10 at Jupiter. Image credit: NASA/JPL

For example, they discovered that the radiation fields near the planet were much stronger than expected. The trajectories of these spacecraft were also used to refine the mass estimates of the Jovian system, and radio occultations by the planet resulted in better measurements of Jupiter’s diameter and the amount of polar flattening.

Six years later, the Voyager missions began, which vastly improved the understanding of the Galilean moons and discovered Jupiter’s rings. They also confirmed that the Great Red Spot was anticyclonic, that its hue had changed sine the Pioneer missions – turning from orange to dark brown – and spotted lightning on its dark side. Observations were also made of Io, which showed a torus of ionized atoms along its orbital path and volcanoes on its surface.

On December 7th, 1995, the Galileo orbiter became the first probe to establish orbit around Jupiter, where it would remain for seven years. During its mission, it conducted multiple flybys of all the Galilean moons and Amalthea and deployed an probe into the atmosphere. It was also in the perfect position to witness the impact of Comet Shoemaker–Levy 9 as it approached Jupiter in 1994.

On September 21st, 2003, Galileo was deliberately steered into the planet and crashed in its atmosphere at a speed of 50 km/s, mainly to avoid crashing and causing any possible contamination to Europa – a moon which is believed to harbor life.

Artist impression of New Horizons with Jupiter. Image credit: NASA/JPL/JHUAPL
Artist impression of New Horizons with Jupiter. Image credit: NASA/JPL/JHUAPL

Data gathered by both the probe and orbiter revealed that hydrogen composes up to 90% of Jupiter’s atmosphere. The temperatures data recorded was more than 300 °C (570 °F) and the wind speed measured more than 644 kmph (400 mph) before the probe vaporized.

In 2000, the Cassini probe (while en route to Saturn) flew by Jupiter and provided some of the highest-resolution images ever taken of the planet. While en route to Pluto, the New Horizons space probe flew by Jupiter and measured the plasma output from Io’s volcanoes, studied all four Galileo moons in detail, and also conducting long-distance observations of Himalia and Elara.

NASA’s Juno mission, which launched in August 2011, achieved orbit around the Jovian planet on July 4th, 2016. The purpose of this mission to study Jupiter’s interior, its atmosphere, its magnetosphere and gravitational field, ultimately for the purpose of determining the history of the planet’s formation (which will shed light on the formation of the Solar System).

As the probe entered its polar elliptical orbit on July 4th after completing a 35-minute-long firing of the main engine, known as Jupiter Orbital Insertion (or JOI). As the probe approached Jupiter from above its north pole, it was afforded a view of the Jovian system, which it took a final picture of before commencing JOI.

Illustration of NASA's Juno spacecraft firing its main engine to slow down and go into orbit around Jupiter. Lockheed Martin built the Juno spacecraft for NASA's Jet Propulsion Laboratory. Credit: NASA/Lockheed Martin
Illustration of NASA’s Juno spacecraft firing its main engine to slow down and go into orbit around Jupiter. Credit: NASA/Lockheed Martin

On July 10th, the Juno probe transmitted its first imagery from orbit after powering back up its suite of scientific instruments. The images were taken when the spacecraft was 4.3 million km (2.7 million mi) from Jupiter and on the outbound leg of its initial 53.5-day capture orbit. The color image shows atmospheric features on Jupiter, including the famous Great Red Spot, and three of the massive planet’s four largest moons – Io, Europa and Ganymede, from left to right in the image.

The next planned mission to the Jovian system will be performed by the European Space Agency’s Jupiter Icy Moon Explorer (JUICE), due to launch in 2022, followed by NASA’s Europa Clipper mission in 2025.

Exoplanets:

The discovery of exoplanets has revealed that planets can get even bigger than Jupiter. In fact, the number of “Super Jupiters” observed by the Kepler space probe (as well as ground-based telescopes) in the past few years has been staggering. In fact, as of 2015, more than 300 such planets have been identified.

Notable examples include PSR B1620-26 b (Methuselah), which was the first super-Jupiter to be observed (in 2003). At 12.7 billion years of age, it is also the third oldest known planet in the universe. There’s also HD 80606 b (Niobe), which has the most eccentric orbit of any known planet, and 2M1207b (Lerna), which orbits the brown dwarf Fomalhaut b (Illion).

Here’s an interesting fact. Scientist theorize that a gas gain could get 15 times the size of Jupiter before it began deuterium fusion, making it a brown dwarf star. Good thing too, since the last thing the Solar System needs is for Jupiter to go nova!

Jupiter was appropriately named by the ancient Romans, who chose to name after the king of the Gods (also known as Jove). The more we have come to know and understand about this most-massive of Solar planets, the more deserving of this name it appears.

We have many interesting articles on Jupiter here at Universe Today. Here are some articles on the color and gravity of Jupiter, how it got its name, and how it shaped our Solar System.

Got questions about Jupiter’s greater mysteries? Then here’s Does Jupiter Have a Solid Core?, Could Jupiter Become a Star?, Could We Live on Jupiter?, and Could We Terraform Jupiter?

We have recorded a whole series of podcasts about the Solar System at Astronomy Cast.

What Did Galileo Invent?

Galileo is considered one of the greatest astronomers of all time. His discovery of Jupiter’s major moons (Io, Europa, Ganymede and Callisto) revolutionized astronomy and helped speed the acceptance of the Copernican Model of the universe. However, Galileo is also known for the numerous scientific inventions he made during his lifetime.

These included his famous telescope, but also a series of devices that would have a profound impact on surveying, the use of artillery, the development of clocks, and meteorology. Galileo created many of these in order to earn extra money to support his family. But ultimately, they would help cement his reputation as the man who challenged centuries worth of previously-held notions and revolutionized the sciences.

Hydrostatic Balance:

Inspired by the story of Archimedes’ and his “Eureka” moment, Galileo began looking into how jewelers weighed precious metals in air, and then by displacement, to determine their specific gravity. In 1586, at the age of 22, he theorized of a better method, which he described in a treatise entitled La Bilancetta (or “The Little Balance”).

In this tract, he described an accurate balance for weighing things in air and water, in which the part of the arm on which the counter weight was hung was wrapped with metal wire. The amount by which the counterweight had to be moved when weighing in water could then be determined very accurately by counting the number of turns of the wire. In so doing, the proportion of metals like gold to silver in the object could be read off directly.

Galileo's La Billancetta, in which he describes a method for hydrostatic balance. Credit: Museo Galileo
Galileo’s “La Billancetta”, in which he describes a new method of measuring the specific gravity of precious metals. Credit: Museo Galileo

Galileo’s Pump:

In 1592, Galileo was appointed professor of mathematics at the University of Padua and made frequent trips to the Arsenal – the inner harbor where Venetian ships were fitted out. The Arsenal had been a place of practical invention and innovation for centuries, and Galileo used the opportunity to study mechanical devices in detail.

In 1593, he was consulted on the placement of oars in galleys and submitted a report in which he treated the oar as a lever and correctly made the water the fulcrum. A year later the Venetian Senate awarded him a patent for a device for raising water that relied on a single horse for operation. This became the basis of modern pumps.

To some, Galileo’s Pump was a merely an improvement on the Archimedes Screw, which was first developed in the third century BCE and patented in the Venetian Republic in 1567. However, there is apparent evidence connecting Galileo’s invention to Archimedes earlier and less sophisticated design.

Pendulum Clock:

During the 16th century, Aristotelian physics was still the predominant way of explaining the behavior of bodies near the Earth. For example, it was believed that heavy bodies sought their natural place or rest – i.e at the center of things. As a result, no means existed to explain the behavior of pendulums, where a heavy body suspended from a rope would swing back and forth and not seek rest in the middle.

Spring driven pendulum clock, designed by Huygens, built by instrument maker Salomon Coster (1657),[96] and copy of the Horologium Oscillatorium,[97] Museum Boerhaave, Leiden
Spring driven pendulum clock, designed by Huygens, built by instrument maker Salomon Coster (1657),[96] and copy of the Horologium Oscillatorium,[97] Museum Boerhaave, Leiden.

Already, Galileo had conducted experiments that demonstrated that heavier bodies did not fall faster than lighter ones – another belief consistent with Aristotelian theory. In addition, he also demonstrated that objects thrown into the air travel in parabolic arcs. Based on this and his fascination with the back and forth motion of a suspended weight, he began to research pendulums in 1588.

In 1602, he explained his observations in a letter to a friend, in which he described the principle of isochronism. According to Galileo, this principle asserted that the time it takes for the pendulum to swing is not linked to the arc of the pendulum, but rather the pendulum’s length. Comparing two pendulum’s of similar length, Galileo demonstrated that they would swing at the same speed, despite being pulled at different lengths.

According to Vincenzo Vivian, one of Galileo’s contemporaries, it was in 1641 while under house arrest that Galileo created a design for a pendulum clock. Unfortunately, being blind at the time, he was unable to complete it before his death in 1642. As a result, Christiaan Huygens’ publication of Horologrium Oscillatorium in 1657 is recognized as the first recorded proposal for a pendulum clock.

The Sector:

The cannon, which was first introduced to Europe in 1325, had become a mainstay of war by Galileo’s time. Having become more sophisticated and mobile, gunners needed instrumentation to help them coordinate and calculate their fire. As such, between 1595 and 1598, Galileo devised and improved a geometric and military compass for use by gunners and surveyors.

The Sector, a military/geometric compass designed by Galileo Galilei. Credit:
The Sector, a military/geometric compass designed by Galileo Galilei. Credit: chsi.harvard.edu

Existing gunner’s compasses relied on two arms at right angles and a circular scale with a plumb line to determine elevations. Meanwhile, mathematical compasses, or dividers, developed during this time were designed with various useful scales on their legs. Galileo combined the uses of both instruments, designing a compass or sector that had many useful scales engraved on its legs that could be used for a variety of purposes.

In addition to offering a new and safer way for gunners to elevate their cannons accurately, it also offered a quicker way of computing the amount of gunpowder needed based on the size and material of the cannonball. As a geometric instrument, it enabled the construction of any regular polygon, computation of the area of any polygon or circular sector, and a variety of other calculations.

Galileo’s Thermometer:

During the late 16th century, there existed no practical means for scientists to measure heat and temperature. Attempts to rectify this within the Venetian intelligentsia resulted in the thermoscope, an instrument that built on the idea of the expansion of air due to the presence of heat.

In ca. 1593, Galileo constructed his own version of a thermoscope that relied on the expansion and contraction of air in a bulb to move water in an attached tube. Over time, he and his colleagues worked to develop a numerical scale that would measure the heat based on the expansion of the water inside the tube.

Galileo Galilei's telescope with his handwritten note specifying the magnifying power of the lens, at an exhibition at The Franklin Institute in Philadelphia. Credit: AP Photo/Matt Rourke
Galileo Galilei’s telescope with his handwritten note specifying the magnifying power of the lens, at an exhibition at The Franklin Institute in Philadelphia. Credit: AP Photo/Matt Rourke

And while it would take another century before scientists – such as Daniel G. Fahrenheit and Anders Celsius – began developing universal temperature scales that could be used in such instrument, Galileo’s thermoscope was a major breakthrough. In addition to being able to measure heat in air, it also provided quantitative meteorological information for the first time ever.

Galileo’s Telescope:

While Galileo did not invent the telescope, he greatly improved upon them. Over the course of many months during 1609, he unveiled multiple telescope designs that would collectively come to be known as Galilean Telescopes. The first, which he constructed between June and July of 1609, was a three-powered spyglass, which he replaced by August with an eight-powered instrument that he presented to the Venetian Senate.

By the following October or November, he managed to improve upon this with the creation a twenty-powered telescope – the very telescope that he used to observe the Moon, discover the four satellites of Jupiter (thereafter known as the Galilean Moons), discern the phases of Venus, and resolve nebular patches into stars.

These discoveries helped Galileo to advance the Copernican Model, which essentially stated that the Sun (and not the Earth) was the center of the universe (aka. heliocentrism). He would go on to refine his designs further, eventually creating a telescope that could magnify objects by a factor of 30.

Though these telescopes were humble by modern standards, they were a vast improvement over the models that existed during Galileo’s time. The fact that he managed to construct them all himself is yet another reason why they are considered his most impressive inventions.

Because of the instruments he created and the discoveries they helped make, Galileo is rightly recognized as one of the most important figures of the Scientific Revolution. His many theoretical contributions to the fields of mathematics, engineering and physics also challenged Aristotelian theories that had been accepted for centuries.

In short, he was one of just a few people who – through their tireless pursuit of scientific truth – forever changed our understanding of the universe and the fundamental laws that govern it.

Universe Today has articles on Galileo’s telescope and scientists want to exhume Galileo’s body.

For more information, check out the Galileo Project and Galileo the telescope and the Laws of Dynamics.

Astronomy Cast has an episode on choosing and using a telescope and how to build your own.

Source: NASA

What is the Biggest Planet in the Solar System?

Jupiter and Io

Ever since the invention of the telescope four hundred years ago, astronomers have been fascinated by the gas giant of Jupiter. Between it’s constant, swirling clouds, its many, many moons, and its Giant Red Spot, there are many things about this planet that are both delightful and fascinating.

But perhaps the most impressive feature about Jupiter is its sheer size. In terms of mass, volume, and surface area, Jupiter is the biggest planet in our Solar System by a wide margin. But just what makes Jupiter so massive, and what else do we know about it?

Size and Mass:

Jupiter’s mass, volume, surface area and mean circumference are 1.8981 x 1027 kg, 1.43128 x 1015 km3, 6.1419 x 1010 km2, and 4.39264 x 105 km respectively. To put that in perspective, Jupiter diameter is roughly 11 times that of Earth, and 2.5 the mass of all the other planets in the Solar System combined.

But, being a gas giant, Jupiter has a relatively low density – 1.326 g/cm3 – which is less than one quarter of Earth’s. This means that while Jupiter’s volume is equivalent to about 1,321 Earths, it is only 318 times as massive. The low density is one way scientists are able to determine that it is made mostly of gases, though the debate still rages on what exists at its core (see below).

Composition:

Jupiter is composed primarily of gaseous and liquid matter. It is the largest of the gas giants, and like them, is divided between a gaseous outer atmosphere and an interior that is made up of denser materials. Its upper atmosphere is composed of about 88–92% hydrogen and 8–12% helium by percent volume of gas molecules, and approx. 75% hydrogen and 24% helium by mass, with the remaining one percent consisting of other elements.

This cut-away illustrates a model of the interior of Jupiter, with a rocky core overlaid by a deep layer of liquid metallic hydrogen. Credit: Kelvinsong/Wikimedia Commons
This cut-away illustrates a model of the interior of Jupiter, with a rocky core overlaid by a deep layer of liquid metallic hydrogen. Credit: Kelvinsong/Wikimedia Commons

The atmosphere contains trace amounts of methane, water vapor, ammonia, and silicon-based compounds as well as trace amounts of benzene and other hydrocarbons. There are also traces of carbon, ethane, hydrogen sulfide, neon, oxygen, phosphine, and sulfur. Crystals of frozen ammonia have also been observed in the outermost layer of the atmosphere.

The interior contains denser materials, such that the distribution is roughly 71% hydrogen, 24% helium and 5% other elements by mass. It is believed that Jupiter’s core is a dense mix of elements – a surrounding layer of liquid metallic hydrogen with some helium, and an outer layer predominantly of molecular hydrogen. The core has also been described as rocky, but this remains unknown as well.

In 1997, the existence of the core was suggested by gravitational measurements, indicating a mass of from 12 to 45 times the Earth’s mass, or roughly 4%–14% of the total mass of Jupiter. The presence of a core is also supported by models of planetary formation that indicate how a rocky or icy core would have been necessary at some point in the planet’s history in order to collect its bulk of hydrogen and helium from the protosolar nebula.

However, it is possible that this core has since shrunk due to convection currents of hot, liquid, metallic hydrogen mixing with the molten core. This core may even be absent now, but a detailed analysis is needed before this can be confirmed. The Juno mission, which launched in August 2011, is expected to provide some insight into these questions, and thereby make progress on the problem of the core.

The temperature and pressure inside Jupiter increase steadily toward the core. At the “surface”, the pressure and temperature are believed to be 10 bars and 340 K (67 °C, 152 °F). At the “phase transition” region, where hydrogen becomes metallic, it is believed the temperature is 10,000 K (9,700 °C; 17,500 °F) and the pressure is 200 GPa. The temperature at the core boundary is estimated to be 36,000 K (35,700 °C; 64,300 °F) and the interior pressure at roughly 3,000–4,500 GPa.

Moons:

The Jovian system currently includes 67 known moons. The four largest are known as the Galilean Moons, which are named after their discoverer, Galileo Galilei. They include: Io, the most volcanically active body in our Solar System; Europa, which is suspected of having a massive subsurface ocean; Ganymede, the largest moon in our Solar System; and Callisto, which is also thought to have a subsurface ocean and features some of the oldest surface material in the Solar System.

Then there’s the Inner Group (or Amalthea group), which is made up of four small moons that have diameters of less than 200 km, orbit at radii less than 200,000 km, and have orbital inclinations of less than half a degree. This groups includes the moons of Metis, Adrastea, Amalthea, and Thebe. Along with a number of as-yet-unseen inner moonlets, these moons replenish and maintain Jupiter’s faint ring system.

Jupiter also has an array of Irregular Satellites, which are substantially smaller and have more distant and eccentric orbits than the others. These moons are broken down into families that have similarities in orbit and composition, and are believed to be largely the result of collisions from large objects that were captured by Jupiter’s gravity.

Illustration of Jupiter and the Galilean satellites. Credit: NASA
Illustration of Jupiter and the Galilean satellites. Credit: NASA

Interesting Facts:

Much like Earth, Jupiter experiences auroras near its northern and southern poles. But on Jupiter, the auroral activity is much more intense and rarely ever stops. The intense radiation, Jupiter’s magnetic field, and the abundance of material from Io’s volcanoes that react with Jupiter’s ionosphere creates a light show that is truly spectacular.

Jupiter also has a violent atmosphere. Winds in the clouds can reach speeds of up to 620 kph (385 mph). Storms form within hours and can become thousands of km in diameter overnight. One storm, the Great Red Spot, has been raging since at least the late 1600s. The storm has been shrinking and expanding throughout its history; but in 2012, it was suggested that the Giant Red Spot might eventually disappear.

The discovery of exoplanets has revealed that planets can get even bigger than Jupiter. In fact, the number of “Super Jupiters” observed by the Kepler space probe (as well as ground-based telescopes) in the past few years has been staggering. In fact, as of 2015, more than 300 such planets have been identified.

Notable examples include PSR B1620-26 b (Methuselah), which was the first super-Jupiter to be observed (in 2003). At 12.7 billion years of age, it is also the third oldest known planet in the universe. There’s also HD 80606 b (Niobe), which has the most eccentric orbit of any known planet, and 2M1207b (Lerna), which orbits the brown dwarf Fomalhaut b (Illion).

Scientist theorize that a gas gain could get 15 times the size of Jupiter before it began deuterium fusion, making it a brown dwarf star. Good thing too, since the last thing the Solar System needs if for Jupiter to go nova!

Jupiter was appropriately named by the ancient Romans, who chose to name after the king of the Gods (Jupiter, or Jove). The more we have come to know and understand about this most-massive of Solar planets, the more deserving of this name it appears.

If you’re wondering, here’s how big planets can get with a lot of mass, and here’s what is the biggest star in the Universe. And here’s the 2nd largest planet in the Solar System.

Here’s another article about the which is the largest planet in the Solar System, and here’s what’s the smallest planet in the Solar System.

We have recorded a whole series of podcasts about the Solar System at Astronomy Cast. Check them out here.

Sources:

Rare Triple Transit! There’ll be 3 Moon Shadows on Jupiter on January 24th, 2015

Play the skywatching game long enough, and anything can happen.

Well, nearly anything. One of the more unique clockwork events in our solar system occurs this weekend, when shadows cast by three of Jupiter’s moons can be seen transiting its lofty cloud tops… simultaneously.

How rare is such an event? Well, Jean Meeus calculates 31 triple events involving moons or their shadows occurring over the 60 year span from 1981 to 2040.

But not all are as favorably placed as this weekend’s event. First, Jupiter heads towards opposition just next month. And of the aforementioned 31 events, only 9 are triple shadow transits. Miss this weekend’s event, and you’ll have to wait until March 20th, 2032 for the next triple shadow transit to occur.

Hubble spies a triple shadow transit  on March 28th, 2004 . Credit: NASA/JPL/Arizona.
Hubble spies a triple shadow transit on March 28th, 2004 . Credit: NASA/JPL/Arizona.

Of course, double shadow transits are much more common throughout the year, and we included some of the best for North America and Europe in 2015 in our 2015 roundup.

The key times when all three shadows can be seen crossing Jupiter’s 45” wide disk are on the morning of Saturday, January 24th starting at 6:26 Universal Time (UT) as Europa’s shadow ingresses into view, until 6:54 UT when Io’s shadow egresses out of sight. This converts to 1:26 AM EST to 1:54 AM EST. The span of ‘triplicate shadows’ only covers a period of slightly less than 30 minutes, but the action always unfolds fast in the Jovian system with the planet’s 10 hour rotation period.

The view at 6:41 UT/1:41 AM EST. Credit: Created using Starry Night Education software.
The view on January 24th at 6:41 UT/1:41 AM EST. Credit: Created using Starry Night Education software.

Unfortunately, the Great Red Spot is predicted to be just out of view when the triple transit occurs, as it crosses Jupiter’s central meridian over three hours later at 10:28 UT.

The moons involved in this weekend’s event are Io, Callisto and Europa. Now, I know what you’re thinking. Seeing three shadows at once is pretty neat, but can you ever see four?

The short answer is no, and the reason has to do with orbital resonance.

The orbital resonance of the three innermost Galilean moons. (Credit: Wikimedia Commons).
The orbital resonance of the three innermost Galilean moons. (Credit: Wikimedia Commons).

The three innermost Galilean moons of Jupiter (Io, Europa and Ganymede) are locked in a 4:2:1 resonance. Unfortunately, this resonance assures that you’ll always see two of the innermost three crossing the disk of Jupiter, but never all three at once. Either Europa or Ganymede is nearly always the “odd moon out.”

To complete a ‘triple play,’ outermost Callisto must enter the picture. Trouble is, Callisto is the only Galilean moon that can ‘miss’ Jupiter’s disk from our line of sight. We’re lucky to be in an ongoing season of Callisto transits in 2015, a period that ends in July 2016.

Perhaps, on some far off day, a space tourism agency will offer tours to that imaginary vantage point on the surface of one of Jupiter’s moons such as Callisto to watch a triple transit occur from close up. Sign me up!

Jupiter currently rises in late January around 5:30 PM local, and sets after sunrise. It is also well placed for northern hemisphere observers in Leo at a declination 16 degrees north . This weekend’s event favors Europe towards local sunrise and ‘Jupiter-set,’ and finds the gas giant world well-placed high in the sky for all of North America in the early morning hours of the 24th.

2AM local Credit: Stellarium.
Jupiter rides high to the south at 1:45 AM EST for the US East Coast. Credit: Stellarium.

Look closely. Do the shadows of the individual moons appear different to you at the eyepiece? It’s interesting to note during a multiple transit that not all Jovian moon shadows are ‘created equal’. Distant Callisto casts a shadow that’s broad, with a ragged gray and diffuse rim, while the shadow of innermost Io appears as an inky black punch-hole dot. If you didn’t know better, you’d think those alien monoliths were busy consuming Jupiter in a scene straight out of the movie 2010.  Try sketching multiple shadow transits and you’ll soon find that you can actually identify which moon is casting a shadow just from its appearance alone.

The orientation of Earth's nighttime shadow at mid-triple transit. Credit: Created using Orbitron.
The orientation of Earth’s nighttime shadow at mid-triple transit. Credit: Created using Orbitron.

Other mysteries of the Galilean moons persist as well. Why did late 19th century observers describe them as egg-shaped? Can visual observers tease out such elusive phenomena as eruptions on Io by measuring its anomalous brightening? I still think it’s amazing that webcam imagers can now actually pry out surface detail from the Galilean moons!

Photo by author.
The 2004 triple shadow transit. Photo by author.

Observing and imaging a shadow transit is easy using a homemade planetary webcam. We’d love to see someone produce a high quality animation of the upcoming triple shadow transit. I know that such high tech processing abilities — to include field de-rotation and convolution mapping of the Jovian sphere — are indeed out there… its breathtaking to imagine just how quickly the fledgling field of ad hoc planetary webcam imaging has changed in just 10 years.

The moons and Jupiter itself also cast shadows off to one side of the planet or the other depending on our current vantage point. We call the point when Jupiter sits 90 degrees east or west of the Sun quadrature, and the point when it rises and sets opposite to the Sun is known as opposition.  Opposition for Jupiter is coming right up for 2015 on February 6th. During opposition, Jupiter and its moons cast their respective shadows nearly straight back.

Did you know: the speed of light was first deduced by Danish astronomer Ole Rømer in 1671 using the discrepancy he noted while predicting phenomena of the Galilean moons at quadrature versus opposition. There were also early ideas to use the positions of the Galilean moons to tell time at sea, but it turned out to be hard enough to see the moons and their shadows with a small telescope based on land, let alone from the pitching deck of a ship in the middle of the ocean.

And speaking of mutual events, we’re still in the midst of a season where it’s possible to see the moons of Jupiter eclipse and occult one another. Check out the USNO’s table for a complete list of events, coming to a sky near you.

And let’s not forget that NASA’s Juno spacecraft is headed towards Jupiter as well., Juno is set to enter a wide swooping orbit around the largest planet in the solar system in July 2016.

Now is a great time to get out and explore Jove… don’t miss this weekend’s triple shadow transit!

Read Dave Dickinson’s sci-fi tale of astronomical eclipse tourism through time and space titled Exeligmos.

Pluto’s Closeup Will Be Awesome Based On Jupiter Pics From New Horizons Spacecraft

New Horizons, you gotta wake up this weekend. There’s so much work ahead of you when you reach Pluto next year! The spacecraft has been sleeping quietly for weeks in its last great hibernation before the dwarf planet close encounter in July. On Saturday (Dec. 6), the NASA craft will open its eyes and begin preparations for that flyby.

How cool will those closeups of Pluto and its moons look? A hint comes from a swing New Horizons took by Jupiter in 2007 en route. It caught a huge volcanic plume erupting off of the moon Io, picked up new details in Jupiter’s atmosphere and gave scientists a close-up of a mysterious “Little Red Spot.” Get a taste of the fun seven years ago in the gallery below.

An eruption from the Tvashtar volcano on Io, Jupiter's moon, in several different wavelength images taken by the New Horizons spacecraft in 2007. The left image from the Long Range Reconnaissance Imager (LORRI) shows lava glowing in the night. At top right, the Multispectral Visible Imaging Camera (MVIC) spotted sulfur and sulfor dioxide deposits on the sunny side of Io. The remaining image from the Linear Etalon Imaging Spectral Array (LEISA) shows volcanic hotspots on Io's surface. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
An eruption from the Tvashtar volcano on Io, Jupiter’s moon, in several different wavelength images taken by the New Horizons spacecraft in 2007. The left image from the Long Range Reconnaissance Imager (LORRI) shows lava glowing in the night. At top right, the Multispectral Visible Imaging Camera (MVIC) spotted sulfur and sulfor dioxide deposits on the sunny side of Io. The remaining image from the Linear Etalon Imaging Spectral Array (LEISA) shows volcanic hotspots on Io’s surface. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Jupiter's "Little Red Spot" seen by the New Horizons spacecraft in 2007. The spot turned red in 2005 for reasons scientists were then unsure of, but speculated it could be due to stuff from inside the atmosphere being stirred up by a storm surge. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Jupiter’s “Little Red Spot” seen by the New Horizons spacecraft in 2007. The spot turned red in 2005 for reasons scientists were then unsure of, but speculated it could be due to stuff from inside the atmosphere being stirred up by a storm surge. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
A "family portrait" of the four Galilean satellites around Jupiter taken by the New Horizons spacecraft and released in 2007. From left, the montage includes Io, Europa, Ganymede and Callisto. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
A “family portrait” of the four Galilean satellites around Jupiter taken by the New Horizons spacecraft and released in 2007. From left, the montage includes Io, Europa, Ganymede and Callisto. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
A composite of Jupiter's bands (and atmospheric structures) taken in several images by the New Horizons Multispectral Visual Imaging Camera, showing differences due to sunlight and wind. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
A composite of Jupiter’s bands (and atmospheric structures) taken in several images by the New Horizons Multispectral Visual Imaging Camera, showing differences due to sunlight and wind. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
In February and March 2007, a huge plume erupted from the Tvashtar volcano on Jupiter's moon Io. The image sequence taken by New Horizons showed the largest such explosion then viewed by a spacecraft -- even accounting for the Galileo spacecraft that examined Io between 1996 and 2001. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
In February and March 2007, a huge plume erupted from the Tvashtar volcano on Jupiter’s moon Io. The image sequence taken by New Horizons showed the largest such explosion then viewed by a spacecraft — even accounting for the Galileo spacecraft that examined Io between 1996 and 2001. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
The New Horizons flyby of Io in 2007 (right) revealed a changing feature on the surface of the Jupiter moon since Galileo's image of 1999 (left.) Inside the circle, a new volcanic eruption spewed material; other pictures showed this region was still active. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
The New Horizons flyby of Io in 2007 (right) revealed a changing feature on the surface of the Jupiter moon since Galileo’s image of 1999 (left.) Inside the circle, a new volcanic eruption spewed material; other pictures showed this region was still active. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Luckiest Photo Ever: The Moon, Jupiter … and More

“No matter how much you plan and prepare,” said photographer Greg Gibbs, “sometimes you just have to be very lucky.”

As we mentioned last week, Jupiter and the Moon were going to have a close encounter in the sky on February 18, with an occultation visible in some areas. And so Gibbs was preparing to get shots of the occultation through his telescope from his location in Victoria, Australia, and was using an automated timer to get shots at about 10 second intervals But then he noticed lights from a plane coming close to the Moon.

“I realised that there was a chance that it would pass in front of the Moon,” he said, “so I quickly canceled the remote timer I was using to take the shots and instead started shooting high speed continuous frames. I managed to get this plane crossing the moon in five individual frames just as Jupiter was about to be occulted by The Moon.”

This final product, as Gibbs notes on his Facebook page, is a two image composite. The Moon, Jupiter and the plane are all one single image. Then he took an overexposed image to bring up the Galilean Moons of (from left to right) Io, Callisto and Europa. At the time of this shot, Ganymede had already been occulted by The Moon.

There’s the old saying, “If you can’t be good, be lucky…”

This shot may have been lucky, but it sure is good, too!

See more of Gibbs astrophotography at his website, Capturing the Night.

Additionally, Peter Lake from Australia put together this video from last night’s occultation:

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

What’s That Very Bright Star – Is it the Planet Jupiter?

[/caption]

Have you seen a very bright star rising in the East every night the past few months? If you’re a night owl, you may have noticed it moves across they sky from the East into the West, shining brightly throughout the night. However this object is not a star! It’s the planet Jupiter and it is the brightest object in the night sky at the moment, apart from the Moon.

At the end of October Jupiter will be at opposition. This means the mighty planet (the largest in our solar system) will be directly opposite the sun as seen from Earth and it will also be at its closest point to Earth in the two planets’ orbits around the Sun. This makes Jupiter or any other object at opposition appear brighter and larger. The opposition of Jupiter occurs on October 29, 2011.

But Jupiter has been gracing our night sky for several months, and will continue to shine brightly as it moves in and out of opposition. But enjoy the view now, as this will be the closest opposition until 2022!

Visually, even with the naked eye, Jupiter is stunning! A burning yellowish-white star-like object, many times brighter than any other stars.

But through a pair of ordinary binoculars or a small telescope, Jupiter comes to life. Not only is it possible to see the disc of the Planet, you can also see the four Galilean moons.

The Galilean moons, Callisto, Ganymede, Europa and Io were discovered by Galileo over 400 years ago and are amazing worlds in their own right.

Callisto is the outermost moon with a very ancient and heavily cratered surface. It is the second largest of the four moons, but does not interact tidally with an “orbital resonance” unlike the other three moons.

Callisto. Image credit: NASA/JPL

Ganymede is the largest of the four moons and is also the largest moon in the Solar system, being larger than the Planet Mercury. The bizarre surface is a mix of two types of terrain – highly cratered dark regions and younger, but still ancient regions with a large array of grooves and ridges. Ganymede is the only moon in the solar system to have its own magnetosphere.

Ganymede
Ganymede Credit: NASA

Europa is the second closest moon and is also the smallest. It has one of the smoothest and newest surfaces in the solar system, being covered purely with ice. Europa is likely a water world and it is believed that below its icy surface, lies a deep moon-wide ocean surrounding a warm mantle. It is one of the most likely places to harbour life in the solar system.

Europa from Galileo
Europa from Galileo

Io is the innermost of the four Galilean moons of Jupiter and third largest. It is the most geologically active body in the solar system with over 400 active volcanoes and an ever changing and hostile surface of sulphur and silicates.

Io Credit: NASA

When you look up tonight and stare at Jupiter, or you are looking at it through binoculars or a telescope, just think – Jupiter and the four Galilean moons are a very interesting place, almost a mini solar system with our larger solar system!

Occasionally you will see Jupiter’s “Great Red Spot” or the shadow of one of the moons on Jupiter’s surface. The Jupiter system is always changing.

If you want to find out what the positions are for the moons, use planetarium software such as Stellarium and then have a look yourself.

Good luck!