A Star was Blocking a Galaxy, but Now it’s Moved Enough That Astronomers can Finally Examine What it Was Hiding

NASA's Hubble Space Telescope captured a detailed image of the tiny galaxy HIPASS J1131–31, nicknamed the "Peekaboo Galaxy." It's more like an ancient galaxy from the Universe's early days than a modern galaxy. Image Credit: NASA, ESA, and Igor Karachentsev (SAO RAS); Image Processing: Alyssa Pagan (STScI)

One of the biggest puzzles in astronomy, and one of the hardest ones to solve, concerns the formation and evolution of galaxies. What did the first ones look like? How have they grown so massive?

A tiny galaxy only 20 million light-years away might be a piece of the puzzle.

Continue reading “A Star was Blocking a Galaxy, but Now it’s Moved Enough That Astronomers can Finally Examine What it Was Hiding”

How Do Stars Get Kicked Out of Globular Clusters?

Hubble image of Messier 54, a globular cluster located in the Sagittarius Dwarf Galaxy. Credit: ESA/Hubble & NASA

Globular clusters are densely-packed collections of stars bound together gravitationally in roughly-shaped spheres. They contain hundreds of thousands of stars. Some might contain millions of stars.

Sometimes globular clusters (GCs) kick stars out of their gravitational group. How does that work?

Continue reading “How Do Stars Get Kicked Out of Globular Clusters?”

The Dark Energy Camera has Captured a Million Images, an Eighth of the Entire sky. Here are Some of its Best Pictures so far

Ten areas in the sky were selected as “deep fields” that the Dark Energy Camera imaged several times during the survey, providing a glimpse of distant galaxies and helping determine their 3D distribution in the cosmos. Credit: NSF/DES/NOIRLab/DOE/FNAL/AURA/University of Alaska Anchorage/

In August 2013, the Dark Energy Survey (DES) began its six-year mission to map thousands of galaxies, supernovae, and patterns in the cosmic structure. This international collaborative effort is dedicated to investigating the mysterious phenomenon known as Dark Energy. This theoretical force counter-acts gravity and accounts for 70% of the Universe’s energy-mass density. Their primary instrument in this mission is the 570-megapixel Dark Energy Camera (DECam), mounted on the Victor M. Blanco 5-meter (16.4 ft) telescope at the Cerro Tlelolo Inter-American Observatory in Chile.

Between 2013 and 2019, the DECam took over one million exposures of the southern night sky and photographed around 2.5 billion astronomical objects – including galaxies, galaxy clusters, stars, comets, asteroids, dwarf planets, and supernovae. For our viewing pleasure, the Dark Energy Survey recently released fifteen spectacular images taken by the DECam during the six-year campaign. These images showcase the capabilities of the DECam, the types of objects it observed, and the sheer beauty of the Universe!

Continue reading “The Dark Energy Camera has Captured a Million Images, an Eighth of the Entire sky. Here are Some of its Best Pictures so far”

Primordial Black Holes Could Have Triggered the Formation of Supermassive Black Holes

Artist view of merging black holes in the early universe. Credit: LIGO/Caltech/MIT/R. Hurt (IPAC)

The early moments of the universe were turbulent and filled with hot and dense matter. Fluctuations in the early universe could have been great enough that stellar-mass pockets of matter collapsed under their own weight to create primordial black holes. Although we’ve never detected these small black holes, they could have played a vital role in cosmic evolution, perhaps growing into the supermassive black holes we see today. A new study shows how this could work, but also finds the process is complicated.

Continue reading “Primordial Black Holes Could Have Triggered the Formation of Supermassive Black Holes”

Supermassive Black Holes Shut Down Star Formation

The Cigar Galaxy (M82), which is a starburst galaxy with high star production. Credit: NASA, ESA and the Hubble Heritage Team (STScI/AURA)

One of the key aspects of galactic evolution is star production. On a basic level, stars form within a galaxy’s gas and dust all the time, and where they form can help determine a galaxy’s shape and size. But there seems to be a sweet point when star production in a galaxy is particularly strong. Galaxies often have a period of rapid star production which then drops off. Astronomers are still trying to understand what causes this drop-off.

Continue reading “Supermassive Black Holes Shut Down Star Formation”

The Milky Way’s Most Recent Meal was a Galaxy it Gobbled up 8-10 Billion Years ago

Gaia-Enceladus in a simulation of a galactic merger with the Milky Way matching Gaia data. Credit: ESA (artist’s impression and composition); Koppelman, Villalobos and Helmi (simulation)

A central aspect of galactic evolution is that they must eat or be eaten. Dark energy strives to push galaxies apart, but gravity tries to pull them together. As a result, galaxies tend to form into local groups. As these superclusters of galaxies become more isolated due to cosmic expansion, they gravitationally turn on each other, and in time the largest galaxies of the group will consume the smaller ones. The Milky Way is one of the larger galaxies in our local group, and so it has consumed smaller galaxies in the past. But piecing together the history of these galactic meals is a real challenge.

Continue reading “The Milky Way’s Most Recent Meal was a Galaxy it Gobbled up 8-10 Billion Years ago”

The Milky Way Hasn’t Been Evenly Mixed

Artist impression: Clouds and streams of cosmic pristine gas (magenta) accrete onto the Milky Way, but this gas does not efficiently mix in the Galactic disk, as highlighted for the Solar neighborhood (zoom-in). © Dr Mark A. Garlick

Gas from the intergalactic medium constantly rains down on galaxies, fueling continued star formation. New research has shown that this gas is not evenly mixed, and stars are not equal across the galaxy. This result means that solar systems are not the same within the Milky Way.

Continue reading “The Milky Way Hasn’t Been Evenly Mixed”

Supermassive Black Hole Winds Were Already Blowing Less Than a Billion Years After the Big Bang

Artist’s impression of a galactic wind driven by a supermassive black hole located in the center of a galaxy. Credit: ALMA (ESO/NAOJ/NRAO)

At the heart of most galaxies is a supermassive black hole. These beasts of gravity can play a crucial role in the formation and evolution of their galaxy. But astronomers still don’t fully understand when the influence of black holes becomes significant. Did large black holes form early in the universe, causing galaxies to form around them? Or did black holes grow after its primordial galaxy had begun to form? You might call this the chicken or egg problem. But a recent study suggests that galaxies and their supermassive black holes can have a mutual interaction that allows them to co-evolve.

Continue reading “Supermassive Black Hole Winds Were Already Blowing Less Than a Billion Years After the Big Bang”

Nearby Ancient Dwarf Galaxies Have a Surprising Amount of Dark Matter

An artist's impression of the four tails of the Sagittarius Dwarf Galaxy (the orange clump on the left of the image) orbiting the Milky Way. The bright yellow circle to the right of the galaxy's center is our Sun (not to scale). Image credit: Amanda Smith (University of Cambridge)

Around the Milky Way, there are literally dozens of dwarf galaxies that continue to be slowly absorbed into our own. These galaxies are a major source of interest for astronomers because they can teach us a great deal about cosmic evolution, like how smaller galaxies merged over time to create larger structures. Since they are thought to be relics of the very first galaxies in the Universe, they are also akin to “galactic fossils.”

Recently, a team of astrophysicists from the Massachusetts Institute of Technology (MIT) observed one of the most ancient of these galaxies (Tucana II) and noticed something unexpected. At the edge of the galaxy, they observed stars in a configuration that suggest that Tucana II has an extended Dark Matter halo. These findings imply that the most ancient galaxies in the Universe had more Dark Matter than previously thought.

Continue reading “Nearby Ancient Dwarf Galaxies Have a Surprising Amount of Dark Matter”

Some of the Milky Way’s oldest stars aren’t where they’re expected to be

Representation of the orbit of the star 232121.57-160505.4. Credit: Cordoni, et al

One of the ways we categorize stars is by their metallicity. That is the fraction of heavier elements a star has compared to hydrogen and helium. It’s a useful metric because the metallicity of a star is a good measure of its age.

Continue reading “Some of the Milky Way’s oldest stars aren’t where they’re expected to be”