The Milky Way’s Last Merger Event Was More Recent Than Thought

Our home galaxy as seen by the European Space Agency’s Gaia satellite. Image Credit: ESA/Gaia/DPAC

The Milky Way is only as massive as it is because of collisions and mergers with other galaxies. This is a messy process, and we see the same thing happening with other galaxies throughout the Universe. Currently, we see the Milky Way nibbling at its two satellite galaxies, the Large and Small Magellanic Clouds. Their fate is likely sealed, and they’ll be absorbed into our galaxy.

Researchers thought the last major merger occurred in the Milky Way’s distant past, between 8 and 11 billion years ago. But new research amplifies the idea that it was much more recent: less than 3 billion years ago.

Continue reading “The Milky Way’s Last Merger Event Was More Recent Than Thought”

Did the Last Great Galactic Merger Create the Milky Way's Bar?

Milky Way. Image credit: NASA/JPL-Caltech/R. Hurt (SSC/Caltech)
Milky Way. Image credit: NASA/JPL-Caltech/R. Hurt (SSC/Caltech)

The Milky Way is a spiral galaxy. More specifically, it is a barred spiral galaxy, meaning that within its central region, there is a bar shape off of which the spirals emanate. About two-thirds of spiral galaxies are barred spirals, and astronomers have thought this difference is just a variance in how density waves cluster stars in a galaxy. But a new study suggests that the bar of the Milky Way may have been caused by an ancient collision with another galaxy.

Continue reading “Did the Last Great Galactic Merger Create the Milky Way's Bar?”

Part of the Milky Way Is Much Older Than Previously Believed

Basic structure of our home galaxy, edge-on view. The new results from ESA's Gaia mission provide for a reconstruction of the history of the Milky Way, in particular of the evolution of the so-called thick disc. Image Credit: Stefan Payne-Wardenaar / MPIA

The Milky Way is older than astronomers thought, or part of it is. A newly-published study shows that part of the disk is two billion years older than we thought. The region, called the thick disk, started forming only 0.8 billion years after the Big Bang.

Continue reading “Part of the Milky Way Is Much Older Than Previously Believed”

A Detailed Scan of the Milky Way Finds Possible “Fossil” Spiral Arms

Looking deep into the Universe, the NASA/ESA Hubble Space Telescope catches a passing glimpse of the numerous arm-like structures that sweep around this barred spiral galaxy, known as NGC 2608. Appearing as a slightly stretched, smaller version of our Milky Way, the peppered blue and red spiral arms are anchored together by the prominent horizontal central bar of the galaxy. In Hubble photos, bright Milky Way stars will sometimes appear as pinpoints of light with prominent lens flares. A star with these features is seen in the lower right corner of the image, and another can be spotted just above the pale centre of the galaxy. The majority of the fainter points around NGC 2608, however, lack these features, and upon closer inspection they are revealed to be thousands of distant galaxies. NGC 2608 is just one among an uncountable number of kindred structures. Similar expanses of galaxies can be observed in other Hubble images such as the Hubble Deep Field which recorded over 3000 galaxies in one field of view.

As we learn more about the cosmos, it’s interesting how some of the greatest discoveries continue to happen close to home. This is expected to continue well into the future, where observations of Cosmic Dawn and distant galaxies will take place alongside surveys of the outer Solar System and our galaxy. In this latter respect, the ESA’s Gaia observatory will continue to play a vital role. As an astrometry mission, Gaia has been to determine the proper position and radial velocity of over a billion stars to create a three-dimensional map of the Milky Way.

Using data from Gaia’s third early Data Release (eDR3) and Legacy Survey data – from the Sloan Digital Sky Survey (SDSS) – an international team of astronomers created a new map of the Milky Way’s outer disk. In the process, they discovered evidence of structures in this region that include the remnants of fossil spiral arms. This discovery will shed new light on the formation and history of the Milky Way and may lead to a breakthrough in our understanding of galactic evolution.

Continue reading “A Detailed Scan of the Milky Way Finds Possible “Fossil” Spiral Arms”

Astronomers Find the Hollowed-Out Shell of a Dwarf Galaxy that Collided With the Milky Way Billions of Years Ago

The Karl Jansky Very Large Array at night, with the Milky Way visible in the sky. Credit: NRAO/AUI/NSF; J. Hellerman

In 2005 astronomers found a dense grouping of stars in the Virgo constellation. It looked like a star cluster, except further surveys showed that some of the stars are moving towards us, and some are moving away. That finding was unexpected and suggested the Stream was no simple star cluster.

A 2019 study showed that the grouping of stars is no star cluster at all; instead, it’s the hollowed-out shell of a dwarf spheroidal galaxy that merged with the Milky Way. It’s called the Virgo Overdensity (VOD) or the Virgo Stellar Stream.

A new study involving some of the same researchers shows how and when the merger occurred and identifies other shells from the same merger.

Continue reading “Astronomers Find the Hollowed-Out Shell of a Dwarf Galaxy that Collided With the Milky Way Billions of Years Ago”

A Stellar Stream of Stars, Stolen from Another Galaxy

The all-sky view that the Gaia survey would have of a simulated Milky-Way-like galaxy. [Credit: Sanderson et al. The Astrophysical Journal, January 6, 2020, DOI: 10.3847/1538-4365/ab5b9d]

Modern professional astronomers aren’t much like astronomers of old. They don’t spend every suitable evening with their eyes glued to a telescope’s eyepiece. You might be more likely to find them in front of a super-computer, working with AI and deep learning methods.

One group of researchers employed those methods to find a whole new collection of stars in the Milky Way; a group of stars which weren’t born here.

Continue reading “A Stellar Stream of Stars, Stolen from Another Galaxy”