The Milky Way's Mass is Much Lower Than We Thought

The rotation curve of our galaxy compared to the Keplerian rotation curve. Credit: Jiao, Hammer et al. / Observatoire de Paris – PSL / CNRS / ESA / Gaia / ESO / S. Brunier

How massive is the Milky Way? It’s an easy question to ask, but a difficult one to answer. Imagine a single cell in your body trying to determine your total mass, and you get an idea of how difficult it can be. Despite the challenges, a new study has calculated an accurate mass of our galaxy, and it’s smaller than we thought.

Continue reading “The Milky Way's Mass is Much Lower Than We Thought”

A Monster Black Hole has Been Found Right in our Backyard (Astronomically Speaking)

The cross-hairs mark the location of the newly discovered monster black hole. Credit: Sloan Digital Sky Survey/S. Chakrabart et al.

Black holes are among the most awesome and mysterious objects in the known Universe. These gravitational behemoths form when massive stars undergo gravitational collapse at the end of their lifespans and shed their outer layers in a massive explosion (a supernova). Meanwhile, the stellar remnant becomes so dense that the curvature of spacetime becomes infinite in its vicinity and its gravity so intense that nothing (not even light) can escape its surface. This makes them impossible to observe using conventional optical telescopes that study objects in visible light.

As a result, astronomers typically search for black holes in non-visible wavelengths or by observing their effect on objects in their vicinity. After consulting the Gaia Data Release 3 (DR3), a team of astronomers led by the University of Alabama Huntsville (UAH) recently observed a black hole in our cosmic backyard. As they describe in their study, this monster black hole is roughly twelve times the mass of our Sun and located about 1,550 light-years from Earth. Because of its mass and relative proximity, this black hole presents opportunities for astrophysicists.

Continue reading “A Monster Black Hole has Been Found Right in our Backyard (Astronomically Speaking)”

Thanks to Gaia we Know Exactly how and When the Sun Will die

How different types of stars live and die. Credit: ESA

Our Sun is doomed. Billions of years from now, the Sun will deplete its hydrogen fuel and swell to a red giant before becoming a white dwarf. It’s a well-known story, and one astronomers have understood for decades. Now, thanks to the latest data from Gaia, we know the Sun’s future in much greater detail.

Continue reading “Thanks to Gaia we Know Exactly how and When the Sun Will die”

This is Not a Photo of the Milky Way. It’s the Map of 1.8 Billion Stars From Gaia’s Major New Data Release

ESA/Gaia/DPAC; CC BY-SA 3.0 IGO. Acknowledgement: A. Moitinho.

In 2013, the European Space Agency (ESA) deployed the Gaia mission to space, a next-generation observatory that will spend the next five years gathering data on the positions, distances, and proper motions of stars. The resulting data will be used to construct the largest 3D space catalog ever, totaling 1 billion stars, planets, comets, asteroids, quasars, and other celestial objects.

Since the mission began, the ESA has issued three early releases of Gaia data, each of which has led to new research findings and more detailed maps of our galaxy. Based on the third release of mission data, known as Early Data Release 3 (Gaia EDR3), astronomers have created a map of the entire sky that includes updated data on celestial objects and manages to capture the total brightness and color of stars in our galaxy.

Continue reading “This is Not a Photo of the Milky Way. It’s the Map of 1.8 Billion Stars From Gaia’s Major New Data Release”