Mysterious Object “G2” at Galactic Center is Actually Binary Star

A mysterious object swinging around the supermassive black hole in the center our galaxy has surprised astronomers by actually surviving what many thought would be a devastating encounter. And with its survival, researchers have finally been able to solve the conundrum of what the object – known as G2 — actually is. Since G2 was discovered in 2011, there was a debate whether it was a huge cloud of hydrogen gas or a star surrounded by gas. Turns out, it was neither … or actually, all of the above, and more.

Astronomers now say that G2 is most likely a pair of binary stars that had been orbiting the black hole in tandem and merged together into an extremely large star, cloaked in gas and dust.

“G2 survived and continued happily on its orbit; a simple gas cloud would not have done that,” said Andrea Ghez from UCLA, who has led the observations of G2. “G2 was basically unaffected by the black hole. There were no fireworks.”

This was one of the “most watched” recent events in astronomy, since it was the first time astronomers have been able to view an encounter with a black hole like this in “real time.” The thought was that watching G2’s demise would not only reveal what this object was, but also provide more information on how matter behaves near black holes and how supermassive black holes “eat” and evolve.

The two Keck 10-meter domes atop Mauna Kea. (Rick Peterson/WMKO)
The two Keck 10-meter domes atop Mauna Kea. (Rick Peterson/WMKO)

Using the Keck Observatory, Ghez and her team have been able to keep an eye on G2’s movements and how the black hole’s powerful gravitational field affected it.

While some researchers initially thought G2 was a gas cloud, others argued that they weren’t seeing the amount of stretching or “spaghettification” that would be expected if this was just a cloud of gas.

As Ghez told Universe Today earlier this year, she thought it was a star. “Its orbit looks so much like the orbits of other stars,” she said. “There’s clearly some phenomenon that is happening, and there is some layer of gas that’s interacting because you see the tidal stretching, but that doesn’t prevent a star being in the center.”

Now, after watching the object the past few months, Ghez said G2 appears to be just one of an emerging class of stars near the black hole that are created because the black hole’s powerful gravity drives binary stars to merge into one. She also noted that, in our galaxy, massive stars primarily come in pairs. She says the star suffered an abrasion to its outer layer but otherwise will be fine.

Ghez explained in a UCLA press release that when two stars near the black hole merge into one, the star expands for more than 1 million years before it settles back down.

“This may be happening more than we thought. The stars at the center of the galaxy are massive and mostly binaries,” she said. “It’s possible that many of the stars we’ve been watching and not understanding may be the end product of mergers that are calm now.”

Ghez and her colleagues also determined that G2 appears to be in that inflated stage now and is still undergoing some spaghettification, where it is being elongated. At the same time, the gas at G2’s surface is being heated by stars around it, creating an enormous cloud of gas and dust that has shrouded most of the massive star.

Usually in astrophysics, timescales of events taking place are very long — not over the course of several months. But it’s important to note that G2 actually made this journey around the galactic center around 25,000 years ago. Because of the amount of time it takes light to travel, we can only now observe this event which happened long ago.

“We are seeing phenomena about black holes that you can’t watch anywhere else in the universe,” Ghez added. “We are starting to understand the physics of black holes in a way that has never been possible before.”

The research has been published in the journal Astrophysical Journal Letters.

Further reading: UCLA, Keck

Watch Live as Astronomers Look for Object ‘G2’ in Observing Run Webcast from the Keck Observatory

Wondering about the latest news on the intriguing object called ‘G2’ that is making its closest approach to the supermassive black hole at the center of our galaxy? You might be able to get the latest update on this object in real time during a rare live-streamed observing run from the W. M. Keck Observatory in Hawaii. Watch live above.

The two 10-meter Keck Observatory telescopes on the summit of Mauna Kea will be steered by astronomer Andrea Ghez and her team of observers from the UCLA Galactic Center Group for two nights to study our galaxy’s supermassive black hole, with an attempt to focus in on the enigmatic G2 to see if it is still intact. They’ll also be setting up a test for Einstein’s General Relativity and gathering more data on what they describe as The Paradox of Youth: young objects paradoxically developing around the black hole.

Here’s the time for the livestream in various timezones:

July 3, 2014 @ 9 pm – 10 pm Hawaii
July 4, 2014 @ Midnight – 1 am Pacific
July 4, 2014 @ 3 am – 4 am Eastern

The most previous observations by the Keck Observatory in Hawaii, according to an Astronomer’s Telegram from May 2, 2014 show that the gas cloud called ‘G2’ was surprisingly still intact, even during its closest approach to the supermassive black hole. This means G2 is not just a gas cloud, but likely has a star inside.

“We conclude that G2, which is currently experiencing its closest approach, is still intact, in contrast to predictions for a simple gas cloud hypothesis and therefore most likely hosts a central star,” said the May 2 Telegram. “Keck LGSAO observations of G2 will continue in the coming months to monitor how this unusual object evolves as it emerges from periapse passage.”

For additional info, see our two previous articles about G2:

Gas Cloud or Star? Mystery Object Heading Towards our Galaxy’s Supermassive Black Hole is Doomed
Object “G2? Still Intact at Closest Approach to Galactic Center, Astronomers Report

Object “G2” Still Intact at Closest Approach to Galactic Center, Astronomers Report

The latest observations by the Keck Observatory in Hawaii show that the gas cloud called “G2” was surprisingly still intact, even during its closest approach to the supermassive black hole at the center of our Milky Way galaxy. Astronomers from the UCLA Galactic Center Group reported today that observations obtained on March 19 and 20, 2014 show the object’s density was still “robust” enough to be detected. This means G2 is not just a gas cloud, but likely has a star inside.

“We conclude that G2, which is currently experiencing its closest approach, is still intact,” said the group in an Astronomer’s Telegram, “in contrast to predictions for a simple gas cloud hypothesis and therefore most likely hosts a central star. Keck LGSAO observations of G2 will continue in the coming months to monitor how this unusual object evolves as it emerges from periapse passage.”

We’ve been reporting on this object since its discovery was announced in 2012. G2 was first spotted in 2011 and was quickly deemed to be heading towards our galaxy’s supermassive black hole, called Sgr A*. G2 is not falling directly into the black hole, but it will pass Sgr A* at about 100 times the distance between Earth and the Sun. But that was close enough that astronomers predicted that G2 was likely doomed for destruction.

But it appears to still be hanging in there, at least in mid-March 2014.

Montage of simulation images showing G2 during its close approach to the black hole at the center of the Milky Way. Images by ESO/MPE/Marc Schartmann
Montage of simulation images showing G2 during its close approach to the black hole at the center of the Milky Way. Images by ESO/MPE/Marc Schartmann

Earlier this week, we explained how there were two ideas of what G2 is: one is a simple gas cloud, and the second opinion is that it is a star surrounded by gas. Some astronomers argue that they aren’t seeing the amount of stretching or “spaghettification” that would be expected if this was just a cloud of gas.

The latest word seems to confirm that G2 is more than just a cloud of gas.

This is exciting for astronomers, since they usually don’t get to see events like this take place “in real time.” In astrophysics, timescales of events taking place are usually very long — not over the course of several months. But it’s important to note that G2 actually met its demise around 25,000 years ago. Because of the amount of time it takes light to travel, we can only now observe this event which happened long ago.

We’ll keep you posted on any future news and observations.

Our Galaxy’s Supermassive Black Hole is a Sloppy Eater

Like most galaxies, our Milky Way has a dark monster in its middle: an enormous black hole with the mass of 4 million Suns inexorably dragging in anything that comes near. But even at this scale, a supermassive black hole like Sgr A* doesn’t actually consume everything that it gets its gravitational claws on — thanks to the Chandra X-ray Observatory, we now know that our SMB is a sloppy eater and most of the material it pulls in gets spit right back out into space.

(Perhaps it should be called the Cookie Monster in the middle.*)

New Chandra images of supermassive black hole Sagittarius A*, located about 26,000 light-years from Earth, indicate that less than 1% of the gas initially within its gravitational grasp ever reaches the event horizon. Instead, much of the gas is ejected before it gets near the event horizon and has a chance to brighten in x-ray emissions.

The new findings are the result of one of the longest campaigns ever performed with Chandra, with observations made over 5 weeks’ time in 2012.

Read more: Chandra Stares Deep into the Heart of Sagittarius A*

“This new Chandra image is one of the coolest I’ve ever seen,” said study co-author Sera Markoff of the University of Amsterdam in the Netherlands. “We’re watching Sgr A* capture hot gas ejected by nearby stars, and funnel it in towards its event horizon.”

As it turns out, the wholesale ejection of gas is necessary for our resident supermassive black hole to capture any at all. It’s a physics trade-off.

“Most of the gas must be thrown out so that a small amount can reach the black hole”, said co-author Feng Yuan of Shanghai Astronomical Observatory in China. “Contrary to what some people think, black holes do not actually devour everything that’s pulled towards them. Sgr A* is apparently finding much of its food hard to swallow.”

X-ray image of Sgr A*
X-ray image of Sgr A*

If it seems odd that such a massive black hole would have problems slurping up gas, there are a couple of reasons for this.

One is pure Newtonian physics: to plunge over the event horizon, material captured — and subsequently accelerated — by a black hole must first lose heat and momentum. The ejection of the majority of matter allows this to occur.

The other is the nature of the environment in the black hole’s vicinity. The gas available to Sgr A* is very diffuse and super-hot, so it is hard for the black hole to capture and swallow it. Other more x-ray-bright black holes that power quasars and produce huge amounts of radiation have much cooler and denser gas reservoirs.

Illustration of gas cloud G2 approaching Sgr A* (ESO/MPE/M.Schartmann/J.Major)
Illustration of gas cloud G2 approaching Sgr A* (ESO/MPE/M.Schartmann/J.Major)

Located relatively nearby, Sgr A* offers scientists an unprecedented view of the feeding behaviors of such an exotic astronomical object. Currently a gas cloud several times the mass of Earth, first spotted in 2011, is moving closer and closer to Sgr A* and is expected to be ripped apart and partially consumed in the coming weeks. Astronomers are eagerly awaiting the results.

“Sgr A* is one of very few black holes close enough for us to actually witness this process,” said Q. Daniel Wang of the University of Massachusetts at Amherst, who led the study.

Watch Black Holes: Monsters of the Cosmos

Source: Chandra press release. Read the team’s paper here.

Image credits: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI

_________________

*Any resemblance of Sgr A* to an actual Muppet, real or fictitious, is purely coincidental.

Galactic Gas Cloud Could Help Spot Hidden Black Holes

The heart of our Milky Way galaxy is an exotic place. It’s swarming with gigantic stars, showered by lethal blasts of high-energy radiation and a veritable cul-de-sac for the most enigmatic stellar corpses known to science: black holes. And at the center of the whole mélange is the granddaddy of all the black holes in the galaxy — Sagittarius A*,  a supermassive monster with 4 million times more mass than the Sun packed into an area smaller than the orbit of Mercury.

Sgr A* dominates the core of the Milky Way with its powerful gravity, trapping giant stars into breakneck orbits and actively feeding on anything that comes close enough. Recently astronomers have been watching the movement of a large cloud of gas that’s caught in the pull of Sgr A* — they’re eager to see what exactly will happen once the cloud (designated G2) enters the black hole’s dining room… it will, in essence, be the first time anyone watches a black hole eat.

But before the dinner bell rings — estimated to be sometime this September — the cloud still has to cover a lot of space. Some scientists are now suggesting that G2’s trip through the crowded galactic nucleus could highlight the locations of other smaller black holes in the area, revealing their hiding places as it passes.

In a new paper titled “G2 can Illuminate the Black Hole Population near the Galactic Center” researchers from Columbia University in New York City and the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Massachusetts propose that G2, a cloud of cool ionized gas over three times more massive than Earth, will likely encounter both neutron stars and other black holes on its way around (and/or into) SMBH Sgr A*.

Estimated number of stellar-mass black holes to be encountered by G2 along its trajectory (Bartos et al.)
Estimated number of stellar-mass black holes to be encountered by G2 along its trajectory (Bartos et al.)

The team notes that there are estimated to be around 20,000 stellar-mass black holes and about as many neutron stars in the central parsec of the galaxy. (A parsec is equal to 3.26 light-years, or 30.9 trillion km. In astronomical scale it’s just over 3/4 the way to the nearest star from the Sun.) In addition there may also be an unknown number of intermediate-mass black holes lurking within the same area.

These ultra-dense stellar remains are drawn to the center region of the galaxy due to the effects of dynamical friction — drag, if you will — as they move through the interstellar material.

Of course, unless black holes are feeding and actively throwing out excess gobs of hot energy and matter due to their sloppy eating habits, they are very nearly impossible to find. But as G2 is observed moving along its elliptical path toward Sgr A*, it could very well encounter a small number of stellar- and intermediate-mass black holes and neutron stars. According to the research team, such interactions may be visible with X-ray spotting spacecraft like NASA’s Chandra and NuSTAR.

Read more: Chandra Stares Deep Into the Heart of Sagittarius A*

NuSTAR X-ray image of a flare emitted by Sgr A* in July 2012 (NASA/JPL-Caltech)
NuSTAR X-ray image of a flare emitted by Sgr A* in July 2012 (NASA/JPL-Caltech)

The chances of G2 encountering black holes and interacting with them in such a way as to produce bright enough x-ray flares that can be detected depends upon a lot of variables, like the angles of interaction, the relative velocities of the gas cloud and black holes, the resulting accretion rates of in-falling cloud matter, and the temperature of the accretion material. In addition, any observations must be made at the right time and for long enough a duration to capture an interaction (or possibly multiple interactions simultaneously) yet also be able to discern them from any background X-ray sources.

Still, according to the researchers such observations would be important as they could provide valuable information on galactic evolution, and shed further insight into the behavior of black holes.

Read the full report here, and watch an ESO news video about the anticipated behavior of the G2 gas cloud around the SMBH Sgr A* below:

This research was conducted by Imre Bartos, Zoltán Haiman, and Bence Kocsis of Columbia University and Szabolcs Márka of the Harvard-Smithsonian Center for Astrophysics.