A Hybrid Fission/Fusion Reactor Could be the Best way to get Through the ice on Europa

This reprocessed colour view of Jupiter’s moon Europa was made from images taken by NASA's Galileo spacecraft in the late 1990s. Credit: NASA/JPL-Caltech

In the coming years, NASA and the European Space Agency (ESA) will send two robotic missions to explore Jupiter’s icy moon Europa. These are none other than NASA’s Europa Clipper and the ESA’s Jupiter Icy Moons Explorer (JUICE), which will launch in 2024, and 2023 (respectively). Once they arrive by the 2030s, they will study Europa’s surface with a series of flybys to determine if its interior ocean could support life. These will be the first astrobiology missions to an icy moon in the outer Solar System, collectively known as “Ocean Worlds.”

One of the many challenges for these missions is how to mine through the thick icy crusts and obtain samples from the interior ocean for analysis. According to a proposal by Dr. Theresa Benyo (a physicist and the principal investigator of the lattice confinement fusion project at NASA’s Glenn Research Center), a possible solution is to use a special reactor that relies on fission and fusion reactions. This proposal was selected for Phase I development by the NASA Innovative Advanced Concepts (NIAC) program, which includes a $12,500 grant.

Continue reading “A Hybrid Fission/Fusion Reactor Could be the Best way to get Through the ice on Europa”

Neutrinos prove the Sun is doing a second kind of fusion in its core

The central nylon balloon of the Borexino Detector. Credit: The Borexino Collaboration

Like all stars, our Sun is powered by the fusion of hydrogen into heavier elements. Nuclear fusion is not only what makes stars shine, it is also a primary source of the chemical elements that make the world around us. Much of our understanding of stellar fusion comes from theoretical models of atomic nuclei, but for our closest star, we also have another source: neutrinos created in the Sun’s core.

Continue reading “Neutrinos prove the Sun is doing a second kind of fusion in its core”

Chinese Fusion Test Reportedly Reaches New Milestone

Researchers at the Experimental Advanced Superconducting Tokamak facility in China have achieved a new milestone in fusion power. Credit: ipp.cas.cn

Fusion power has long been considered to be the holy grail of alternative energy. Clean, abundant power, created through a self-sustaining process where atomic nuclei are fused at extremely high temperatures. Achieving this has been the goal of atomic researchers and physicists for over half a century, but progress has been slow. While the science behind fusion power is solid, the process has not exactly been practical.

In short, fusion can only be considered a viable form of power if the amount of energy used to initiate the reaction is less than the energy produced. Luckily, in recent years, a number of positive steps have been taken towards this goal. The latest comes from China, where researchers at the Experimental Advanced Superconducting Tokamak (EAST) recently report that they have achieved a fusion milestone.

Continue reading “Chinese Fusion Test Reportedly Reaches New Milestone”