Astronomers Just saw the Most Powerful Gamma-ray Burst Ever Recorded

Artist’s impression of a gamma-ray burst. Credit: ESO/A. Roquette

Gamma-ray bursts (GRBs) are one of the most mysterious transient phenomena facing astronomers today. These incredibly energetic bursts are the most powerful electromagnetic events observed since the Big Bang and can last from a few milliseconds to many hours. Whereas longer bursts are thought to occur during supernovae, when massive stars undergo gravitational collapse and shed their outer layer to become black holes, shorter events have also been recorded when massive binary objects (black holes and neutron stars) merge.

These bursts are characterized by an initial flash of gamma rays and a longer-lived “afterglow” typically emitted in X-ray, ultraviolet, radio, and other longer wavelengths. In the early-morning hours on October 14th, 2022, two independent teams of astronomers using the Gemini South telescope observed the aftermath of a GRB designated GRB221009A. Located 2.4 billion light-years away in the Sagitta constellation, this event was perhaps the closes and most powerful explosion ever recorded and was likely triggered by a supernova that gave birth to a black hole.

Continue reading “Astronomers Just saw the Most Powerful Gamma-ray Burst Ever Recorded”

The Asteroid That Killed the Dinosaurs Also Flooded the World's Coastlines With a Catastrophic Tsunami

Earth and possibly its Moon were hit by impactors that killed off the dinosaurs
Artistic rendition of the Chicxulub impactor striking ancient Earth, with Pterosaur observing. Could pieces of the same impact swarm have hit the Moon, too? Credit: NASA

For decades, scientists have theorized that a massive impact caused the Cretaceous-Paleogene extinction event. This event occurred about 66 million years ago and caused the mass extinction of about 75% of all plant and animal species on Earth (including the non-avian dinosaurs). With the discovery of the massive Chicxulub crater in the Yucatan Peninsula (southern Mexico) in the 1970s, scientists concluded that they’d found the impact responsible. Based on all the available data, the Chicxulub Impact event is believed to have been as powerful as 100,000 billion metric tons (110,231 U.S tons) of TNT.

This blast was more powerful than all the nuclear devices in the world combined and sent an estimated 25 trillion metric tons (~27.5 US tons) of hot dust, ash, and steam into the atmosphere, creating a global winter. But according to new research led by the University of Michigan, an international team of geologists has determined that the impact also created a global tsunami. According to their findings, this tsunami was 30,000 times more powerful than the 2004 Indian Ocean tsunami, one of the largest and most devastating tsunamis on record.

Continue reading “The Asteroid That Killed the Dinosaurs Also Flooded the World's Coastlines With a Catastrophic Tsunami”

Shortly Before They Collided, two Black Holes Tangled Spacetime up Into Knots

A binary black hole system, viewed from above. Image Credit: Bohn et al. (see http://arxiv.org/abs/1410.7775)

In February 2016, scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO) announced the first-ever detection of gravitational waves (GWs). Originally predicted by Einstein’s Theory of General Relativity, these waves are ripples in spacetime that occur whenever massive objects (like black holes and neutron stars) merge. Since then, countless GW events have been detected by observatories across the globe – to the point where they have become an almost daily occurrence. This has allowed astronomers to gain insight into some of the most extreme objects in the Universe.

In a recent study, an international team of researchers led by Cardiff University observed a binary black hole system originally detected in 2020 by the Advanced LIGO, Virgo, and Kamioki Gravitational Wave Observatory (KAGRA). In the process, the team noticed a peculiar twisting motion (aka. a precession) in the orbits of the two colliding black holes that was 10 billion times faster than what was noted with other precessing objects. This is the first time a precession has been observed with binary black holes, which confirms yet another phenomenon predicted by General Relativity (GR).

Continue reading “Shortly Before They Collided, two Black Holes Tangled Spacetime up Into Knots”

TESS has Resumed Normal Operations

An artist’s rendition of the Transiting Exoplanet Survey Satellite (TESS). Credit: NASA's Goddard Space Flight Center

In April 2018, NASA launched the Transiting Exoplanet Survey Satellite (TESS), the successor to the Kepler Space Telescope that revolutionized the exoplanet studies field. Like its predecessor, TESS has been scanning almost the entire sky for five years for extrasolar planets using the Transit Method. This consists of monitoring thousands of stars for periodic dips in brightness, which may indicate a planet passing in front of the star relative to the observer. To date, TESS has made 243 confirmed discoveries, with another 4562 candidates – or TESS Objects of Interest (TOI) – awaiting confirmation.

On Monday, October 10th, fans of the TESS mission and the research it conducts got a bit of a scare as the observatory experienced a malfunction and had to be put into safe mode. Three days later, at around 06:30 PM EDT (03:30 PM PDT) on October 13th, NASA announced that their engineers had successfully powered up the instrument and brought it back online. While technicians at NASA are still investigating the cause of the malfunction, the spacecraft is now back in its fine-pointing mode and has resumed its second extended mission (EM2).

Continue reading “TESS has Resumed Normal Operations”

Starship and Super Heavy are Stacked up Again. How Long Until They fly?

The SN24 and BN7 prototypes fully stacked at the SpaceX Starbase. Credit: SpaceX

Things are heating up again at the SpaceX Starbase in Boca Chica, Texas! With so many static fire and flight tests now behind them and the FAA environmental assessment complete, space exploration enthusiasts have wondered when Elon Musk would attempt to conduct an orbital flight with the Starship prototype. As of Tuesday, October 11th, the Starship 24 (SN24) and Booster 7 (BN7) prototypes were once again seen fully stacked on the orbital launch pad, leading many to wonder if the long-awaited orbital flight is imminent!

Continue reading “Starship and Super Heavy are Stacked up Again. How Long Until They fly?”

NASA has Built a Collection of Instruments That Will Search for Life Inside Europa and Enceladus

Counterclockwise from top: California’s Mono Lake was the site of a field test for JPL’s Ocean Worlds Life Surveyor. A suite of eight instruments designed to detect life in liquid samples from icy moons, OWLS can autonomously track lifelike movement in water flowing past its microscopes. Credit: NASA/JPL-Caltech

One of the most exciting aspects of space exploration today is how the field of astrobiology – the search for life in our Universe – has become so prominent. In the coming years, many robotic and even crewed missions will be bound for Mars that will aid in the ongoing search for life there. Beyond Mars, missions are planned for the outer Solar System that will explore satellites and bodies with icy exteriors and interior oceans – otherwise known as “Ocean Worlds.” These include the Jovian satellites Europa and Ganymede and Saturn’s moons Titan and Enceladus.

Similar to how missions to Mars have analyzed soil and rock samples for evidence of past life, the proposed missions will analyze liquid samples for the chemical signatures that we associate with life and biological processes (aka. “biosignatures”). To aid in this search, scientists at NASA’s Jet Propulsion Laboratory have designed the Ocean Worlds Life Surveyor (OWLS), a suite of eight scientific instruments designed to sniff out biosignatures. In the coming decades, this suite could be used by robotic probes bound for “Ocean Worlds” all across the Solar System to search for signs of life.

Continue reading “NASA has Built a Collection of Instruments That Will Search for Life Inside Europa and Enceladus”

The Pacific Ocean Will be Gone in 300 Million Years as the World's Continents Drift and Combine

Earth, seen from space, above the Pacific Ocean. Credit: NASA

Today, the Earth’s seven continents are distributed across the surface, with North and South America occupying one hemisphere, Africa, Europe, Asia, and Australia occupying the other, and Antarctica sitting alone around the South Pole. However, these continents were arranged in entirely different configurations throughout Earth’s history. On occasion, they formed supercontinents like Gondwana (ca. 550 to 180 million) and Pangaea (ca. 335 to 200 million years ago) that were surrounded by “superoceans.”

Eventually, the Earth’s tectonic plates will come together again to form the world’s next supercontinent. According to new research led by Curtin University in Bentley, Australia, this will happen roughly 200 to 300 million years from now. As they determined through a series of simulations, this will involve the Americas drifting westward until they collide with Australia and Asia (eliminating the Pacific Ocean) and Antarctica moving north to join them. This will give rise to the new supercontinent they have named “Amasia,” which will also have profound implications for life on Earth.

Continue reading “The Pacific Ocean Will be Gone in 300 Million Years as the World's Continents Drift and Combine”

The Dark Energy Camera has Captured a Million Images, an Eighth of the Entire sky. Here are Some of its Best Pictures so far

Ten areas in the sky were selected as “deep fields” that the Dark Energy Camera imaged several times during the survey, providing a glimpse of distant galaxies and helping determine their 3D distribution in the cosmos. Credit: NSF/DES/NOIRLab/DOE/FNAL/AURA/University of Alaska Anchorage/

In August 2013, the Dark Energy Survey (DES) began its six-year mission to map thousands of galaxies, supernovae, and patterns in the cosmic structure. This international collaborative effort is dedicated to investigating the mysterious phenomenon known as Dark Energy. This theoretical force counter-acts gravity and accounts for 70% of the Universe’s energy-mass density. Their primary instrument in this mission is the 570-megapixel Dark Energy Camera (DECam), mounted on the Victor M. Blanco 5-meter (16.4 ft) telescope at the Cerro Tlelolo Inter-American Observatory in Chile.

Between 2013 and 2019, the DECam took over one million exposures of the southern night sky and photographed around 2.5 billion astronomical objects – including galaxies, galaxy clusters, stars, comets, asteroids, dwarf planets, and supernovae. For our viewing pleasure, the Dark Energy Survey recently released fifteen spectacular images taken by the DECam during the six-year campaign. These images showcase the capabilities of the DECam, the types of objects it observed, and the sheer beauty of the Universe!

Continue reading “The Dark Energy Camera has Captured a Million Images, an Eighth of the Entire sky. Here are Some of its Best Pictures so far”

Underground Liquid Water Detected on Mars? Maybe not

This image from NASA’s Mars Reconnaissance Orbiter shows the edge of the Martian South Pole Layered Deposit. Credit: NASA/JPL-Caltech/University of Arizona

When planning crewed missions to Mars, the key phrase is “follow the water.” When astronauts set down on the Red Planet in the next decade, they will need access to water to meet their basic needs. Following the water is also crucial to our ongoing exploration of Mars and learning more about its past. While all of the water on the Martian surface exists as ice today (the majority locked away in the polar ice caps), it is now known that rivers, lakes, and an ocean covered much of the planet billions of years ago.

Determining where this water went is essential to learning how Mars underwent its historic transformation to become the dry and cold place it is today. Close to twenty years ago, the ESA’s Mars Express orbiter made a huge discovery when it detected what appeared to be a massive deposit of water ice beneath the southern polar region. However, recent findings by a team of researchers from Cornell University indicate that the radar reflections from the South Pole Layered Deposit (SPLD) may be the result of geological layering.

Continue reading “Underground Liquid Water Detected on Mars? Maybe not”

The First Telescope Images of DART's Impact are Starting to Arrive

Artist's impression of the DART mission impacting the moonlet Dimorphos. Credit: ESA

On September 26th, at 23:14 UTC (07:14 PM EST; 04:14 PM PST), NASA’s Double Asteroid Redirect Test (DART) spacecraft successfully struck the 160-meter (525 ft) moonlet Dimorphos that orbits the larger Didymos asteroid. The event was live-streamed all around the world and showed footage from DART’s Didymos Reconnaissance and Asteroid Camera for Optical navigation (DRACO) as it rapidly approached Dimorphos. In the last few seconds, DART was close enough that individual boulders could be seen on the moonlet’s surface.

About 38 seconds after impact, the time it took the signal to reach Earth, the live stream ended, signaling that DART had successfully impacted Dimorphos and was destroyed in the process. Meanwhile, teams of astronomers stretching from the Indian Ocean to the Arabian Peninsula watched the impact with their telescopes. One, in particular – the Les Makes Observatory on the island of Le Reunion in the Indian Ocean – captured multiple images of the impact. These were used to create a real-time video and show the asteroid brightening as it was pushed away, followed by material ejected from the surface.

Continue reading “The First Telescope Images of DART's Impact are Starting to Arrive”