Dawn Spacecraft Unraveling Mysteries of Ceres Intriguing Bright Spots as Sublimating Salt Water Residues

This representation of Ceres' Occator Crater in false colors shows differences in the surface composition. Occator measures about 60 miles (90 kilometers) wide. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This representation of Ceres' Occator Crater in false colors shows differences in the surface composition. Red corresponds to a wavelength range around 0.97 micrometers (near infrared), green to a wavelength range around 0.75 micrometers (red, visible light) and blue to a wavelength range of around 0.44 micrometers (blue, visible light). Occator measures about 60 miles (90 kilometers) wide. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This representation of Ceres' Occator Crater in false colors shows differences in the surface composition. Occator measures about 60 miles (90 kilometers) wide. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This representation of Ceres’ Occator Crater in false colors shows differences in the surface composition. Red corresponds to a wavelength range around 0.97 micrometers (near infrared), green to a wavelength range around 0.75 micrometers (red, visible light) and blue to a wavelength range of around 0.44 micrometers (blue, visible light). Occator measures about 60 miles (90 kilometers) wide. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

With NASA’s Dawn spacecraft set to enter its final and lowest orbit around the dwarf planet Ceres, spectral measurements are enabling researchers to gradually unravel the nature of the numerous mysterious and intriguing bright spots recently discovered, and now they conclude that briny mixtures of ice and salts apparently reside just beneath certain patches of the pockmarked surface and that “water is sublimating” from the surface of an “active crater”.

Indeed, excited scientists report that high resolution images and spectra from Dawn indicate that Ceres is an active world even today, according to a pair of newly published scientific papers in the journal Nature. Continue reading “Dawn Spacecraft Unraveling Mysteries of Ceres Intriguing Bright Spots as Sublimating Salt Water Residues”

Space Station Trio Returns Safely to Earth for Rare Night Landing After 141 Day Mission

Scott Kelly of NASA captured this image, from aboard the International Space Station, of the Soyuz TMA-17M leaving the ISS on Dec. 11, 2015. Credits: NASA/Scott Kelly
Scott Kelly of NASA captured this image, from aboard the International Space Station, of the Soyuz TMA-17M leaving the ISS on Dec. 11, 2015. Credits: NASA/Scott Kelly
Expedition 46 Commander Scott Kelly of NASA captured this image, from aboard the International Space Station, of the Dec. 11, 2015 undocking and departure of the Soyuz TMA-17M carrying home Expedition 45 crew members Kjell Lindgren of NASA, Oleg Kononenko of the Russian Federal Space Agency and Kimiya Yui of the Japan Aerospace Exploration Agency after their 141-day mission on the orbital laboratory. Newly arrived Cygnus cargo ship and solar panels seen at upper right. Credits: NASA/Scott Kelly
Expedition 46 Commander Scott Kelly of NASA captured this image, from aboard the International Space Station, of the Dec. 11, 2015 undocking and departure of the Soyuz TMA-17M carrying home Expedition 45 crew members Kjell Lindgren of NASA, Oleg Kononenko of the Russian Federal Space Agency and Kimiya Yui of the Japan Aerospace Exploration Agency after their 141-day mission on the orbital laboratory. Newly arrived Cygnus cargo ship and solar panels seen at upper right. Credits: NASA/Scott Kelly

Plummeting to Earth during a fiery atmospheric reentry within the cramped confines of their Russian Soyuz capsule, an international trio of space flyers returned safely to the Home Planet today, Dec. 11, for a rare nighttime landing, after departing the International Space Station (ISS) which had been their home in space for the past 141 days.

Expedition 45 crew members Kjell Lindgren of NASA, Oleg Kononenko of the Russian Federal Space Agency and Kimiya Yui of the Japan Aerospace Exploration Agency (JAXA) safely concluded their nearly Continue reading “Space Station Trio Returns Safely to Earth for Rare Night Landing After 141 Day Mission”

Watch Fast and Furious All-sky Aurora Filmed in Real Time

Screen shot of video from aurora in Norway from November 2015. Credit: Thierry Legault.

If seeing the Northern or Southern Lights hasn’t been crossed off your bucket list yet, this video is the next best thing to seeing the aurora live. Astrophotographer extraordinaire Thierry Legault has captured spectacular views of the Aurora Borealis from Norway, filmed in real time.

“I was in Norway in early November,” Thierry told Universe Today, “this was my 5th stay and really the best one, with incredible auroras. At moments they were so large and fast that we didn’t know where to look.” He added they were “totally hypnotic.”

The 16-minute video includes 6 of the best sequences Legault captured. “I included the start and finish of the sequences to show their behavior to people who have never witnessed them,” he said. “The auroras seem to be alive, sometimes like snakes or rivers.”

Legault used a Sony Alpha 7s, which he says is the only camera able to record video like this in such lighting. The video is recorded at 25 frames a second.

For the best view of the video, switch to full HD mode (1080p) and full screen.

Legault has been going to Norway annually to see the aurora. Here are the views he captured last year.

See more of Legault’s work at his website. He has technical pages there with advice for capturing the night sky. He provides more details and tips in his excellent book, Astrophotography.

How Many Moons Does Mars Have?

Phobos and Deimos, photographed here by the Mars Reconnaissance Orbiter, are tiny, irregularly-shaped moons that are probably strays from the main asteroid belt. Credit: NASA - See more at: http://astrobob.areavoices.com/2013/07/05/rovers-capture-loony-moons-and-blue-sunsets-on-mars/#sthash.eMDpTVPT.dpuf

Many of the planets in our Solar System have a system of moons. But among the rocky planets that make up the inner Solar System, having moons is a privilege enjoyed only by two planets: Earth and Mars. And for these two planets, it is a rather limited privilege compared to gas giants like Jupiter and Saturn which each have several dozen moons.

Whereas Earth has only one satellite (aka. the Moon), Mars has two small moons in orbit around it: Phobos and Deimos. And whereas the vast majority of moons in our Solar System are large enough to become round spheres similar to our own Moon, Phobos and Deimos are asteroid-sized and misshapen in appearance.

Continue reading “How Many Moons Does Mars Have?”

Our Highest Resolution Views Yet of Pluto’s Surface

The Mountainous Shoreline of Sputnik Planum on Pluto. Great blocks of Pluto’s water-ice crust appear jammed together in the informally named al-Idrisi mountains. Some mountain sides appear coated in dark material, while other sides are bright. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute.
The Mountainous Shoreline of Sputnik Planum on Pluto. Great blocks of Pluto’s water-ice crust appear jammed together in the informally named al-Idrisi mountains. Some mountain sides appear coated in dark material, while other sides are bright. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute.

The New Horizons spacecraft has been slowly sending back all the images and data it gathered during its July flyby of the Pluto system. The latest batch of images to arrive here on Earth contains some of the highest resolution views yet that it captured of Pluto’s surface, taken during the spacecraft’s closest approach.

The images show a wide variety of spectacular craters, mountains and glaciers. The New Horizons team said the images have resolutions of about 250-280 feet (77-85 meters) per pixel – revealing features less than half the size of a city block on the diverse surface of the distant dwarf planet. The images are six times better than the resolution of the global Pluto map New Horizons obtained.
Continue reading “Our Highest Resolution Views Yet of Pluto’s Surface”

Zodiac Signs and Their Dates

A chart of the constellations and signs that make up the zodiac. Credit: NASA

Did you know that there are 88 constellations in the night sky? Over the course of several thousand years, human beings have cataloged and named them all. But only 12 of them are particularly famous and continue to play an active role in our astrological systems. These are known as the zodiac signs, 12 constellations that correspond to the different months of the year.

Each of these occupies a sector of the sky which makes up 30° of the ecliptic, starting at the vernal equinox – one of the intersections of the ecliptic with the celestial equator. The order of these astrological signs is Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capricorn, Aquarius and Pisces. Here are all the zodiac signs and their dates. If your birthday falls within one of those date ranges, that’s your zodiac sign.

Granted, modern science has shown astrology to be an ancient fallacy, a way of connecting patterns in celestial movements to events and behaviors here on Earth. But for ancient people, such patterns were necessary given the fact that they lacked an understanding of human psychology, astronomy, and that Earth was not the center of the universe.

The concept of the zodiac originated in Babylon in the 2nd millennium BCE, and was later influenced by Hellenistic (Ancient Greek), Roman, and Egyptian culture. This resulted in a mix of traditions, where the 12 zodiac symbols were associated with the 12 Houses – different fields of experience associated with the various planets – and the four classical elements (Earth, Wind, Water and Fire).

The symbols of the zodiac. Credit: what-is-astrology.com

In essence, astrology maintains that celestial phenomena are related to human activity, so the signs are held to represent certain characteristics of behavior and personality traits. What we know today as astrology comes from the 2nd century AD, as it was formally described by Ptolemy in his work, Tetrabiblos.

This book was responsible for the spread of astrology’s as we know it across Europe and the Middle East during the time of the Roman Empire. These traditions have remained relatively unchanged for over seventeen centuries, though some alterations have been made due to the subsequent discoveries of the other planets in our Solar System.

Naturally, the birth of the modern psychology, biology and astronomy has completely discredited the notion that our personalities are determined by birth signs, the position of the stars or the planets. Given what we know today of the actual elements, the movements of the planets, and the forces that govern the universe, astrology is now known for being little more than superstition.

What’s more, the dates of the ‘star signs’ were assigned over 2,000 years ago, when the zodiac was first devised. At that time, astronomers believed that the Earth’s position was fixed in the universe, and did not understand that the Earth is subject to precession – where Earth’s rotational and orbital parameters slowly change with time. As such, the zodiac signs no longer correspond to constellations of stars that appear in night sky.

The constellations Ophiuchus. Credit:
The constellations Ophiuchus, represented as a man grasping a snake. Credit: chandra.harvard.edu

And last, but certainly not least, there is the issue of the missing 13th sign, which corresponds to the constellation Ophiuchus. Over 2000 years ago, this constellation was deliberately left out, though the Sun clearly passes in front of it after passing in front of Scorpius (aka. Scorpio) and before reaching Sagittarius.

It is unclear why ancient astrologers would do this, but it is a safe bet that they wanted to divide the 360° path of the Sun into 12 equal parts. But the true boundaries that divide the constellations, as defined by the International Astronomical Union (IAU), are not exact. And Ophiuchus actually spends more time behind the Sun than its immediate neighbor (19 days compared to Scorpius’ 12).

To find out what zodiac sign you were really born under, check out this story from BBC’s iWonder. And in the meantime, here are the zodiac signs, listed in order along with what they mean, and some interesting facts associated with their respective constellations:

Aries

Aries: March 21 – April 19

The sign of Aries, which covers 0° to 30° of celestial longitude, is represented by The Ram, which is based on the Chrysomallus – the flying ram that provided the Golden Fleece in Greek mythology. Aries is associated with the First House, known traditionally as Vita (Latin for life) and in the modern context as the “House of Self”. Aries is associated with Fire, and the ruling celestial body of Aries is Mars.

The Aries constellation is also home to Teegarden’s Star, one of Sun’s closest neighbors, located approximately 12 light years away. It appears to be a red dwarf, a class of low temperature and low luminosity stars. And then there’s Alpha Areitis, which is easily spotted by the naked eye. Also known as “Hamal” – literally “head of the sheep” in Arabic – this star is located at the point where constellations angles downward to form an arc.

The constellation Aries. Credit: iau.org
The constellation Aries. Credit: iau.org

For those with telescopes, several galaxies can be spotted within the Aries constellation as well. These include the spiral galaxy NGC 772 and the large 13th magnitude NGC 697 spiral galaxy. NGC 972 is another, which is faint (at magnitude 12) and part of a galaxy group. And then there’s the dwarf irregular galaxy NGC 1156, which is considered a Magellanic-type galaxy with a larger than average core.

Aries is also home to several meteor showers, such as the May Arietids. This daylight meteor shower begins between May 4th and June 6th with maximum activity happening on May 16th. The Epsilon Arietids are also a daylight occurrence, and are active between April 25th to May 27th with peak activity on May 9th. And then there are the Daytime Arietids, which occur from May 22nd to July 2nd with a maximum rate of one a minute on June 8th.

To top it off, the Aries constellation contains several stars with extrasolar planets. For example, HIP 14810, a G5 type star, is orbited by three confirmed exoplanets, all of them giant planets (all Super-Earths). HD 12661, also a G-type main sequence star, has two orbiting planets (which appear to be Super-Jupiters). And HD 20367, a G0 type star, has one orbiting gas giant that roughly the same size as Jupiter.

Taurus

Taurus: April 20 – May 20

The sign of Taurus, which covers 30° to 60° of celestial longitude, is represented by The Bull – which is based on the Cretan Bull that fathered the Minotaur and was killed by Theseus. Taurus is associated with the Second House, known by the Latin name of Lucrum (wealth) and by the modern name, “House of Value”, and the element Earth. The ruling celestial body of Taurus is Venus.

The constellation Taurus. Credit: iau.org

Taurus’ brightest star, Alpha Tauri, is also known by its traditional name, Al Dabaran (which was Latinized to become Aldebaran). The name, which is Arabic, literally means “the Follower” because of the way the Taurus constellation appears to follow the Pleiades star cluster across the sky. In Latin, it was traditionally known as Stella Dominatrix, but to Medieval English astronomers, it was known as Oculus Tauri – literally the “eye of Taurus.”

There is one major annual meteor shower associated with the constellation of Taurus: the annual Taurids, which peak on or about November 5th of each year and have a duration period of about 45 days. The maximum fall rate for this meteor shower is about 10 meteors per hour, with many bright fireballs often occurring when the parent comet – Encke – has passed near perihelion.

And speaking of Pleiades (aka. Messier 45, The Seven Sisters) this cluster of stars is located perpendicular to Aldebaran in the night sky, and is visible to the unaided eye. Although it is made up of over 1000 confirmed stars, this object is identifiable by its seven particularly bright blue stars (though as many as 14 up can be seen with the naked eye depending on local observing conditions).

Gemini

Gemini: May 21 – June 20

The sign Gemini covers 60° to 90° of the celestial longitude, and is represented by The Twins. These are based on the Dioscuri of Greek mythology, two mortals that were granted shared godhood after death. Gemini is part of the Third House, traditionally named Fratres (Brothers) and currently known as the House of Communications. The associated element for Geminis is Air, and the ruling celestial body is Mercury.

The constellation Gemini. Credit: iau.org

Gemini’s alpha and beta stars – aka. Castor and Pollux (“The Twins”) – are the easiest to recognize and can be spotted with the naked eye. Pollux is the brighter of the two, an orange-hued giant star of magnitude 1.2 that is 34 light-years from Earth. Pollux has an extrasolar planet revolving around it, as do two other stars in Gemini, a super-Jupiter which was confirmed in 2006.

There are two annual meteor showers associated with the constellation of Gemini. The first is the March Geminids, which peaks on or around March 22nd. The average fall rate is generally about 40 per hour (but this varies) and the meteors appear to be very slow, entering our atmosphere unhurriedly and leaving lasting trails.

The second meteor shower are the Geminids themselves, which peak on or near the date of December 14th, with activity beginning up to two weeks prior and lasting for several days. The Geminids are one of the most beautiful and mysterious showers, with a rate of about 110 per hour during a moonless night.

The Gemini constellation is also associated with Messier 35, a galactic open star cluster that is easily spotted with the naked eye. The star cluster is quite young, having formed some 100 million years ago, and is quite bright due to it having blown away most of its leftover material (i.e. nebular dust and gas) that went into the star formation process. Other open clusters in Gemini include NGC 2158, which lies directly southwest of M35 in the night sky.

The open star clusters Messier 35 and NGC 2158, photographed at La Palma, Roque de los Muchachos (Degollada de los Franceses). Credit: estelar.de/Oliver Stein
The open star clusters Messier 35 and NGC 2158, photographed at La Palma, Roque de los Muchachos. Credit: estelar.de/Oliver Stein


Cancer

Cancer: June 21 – July 22

Cancer, which covers 90° to 120° of celestial longitude, is represented by The Crab – or Karkinos, a giant crab from Greek mythology that harassed Hercules during his fight with the Hydra. The sign is associated with the Fourth House – Genitor (Parent) in Latin, or the House of Home and Family in modern times. In terms of the elements, Cancers are characterized by the element of Water, and the ruling celestial body of Cancer is The Moon.

Cancer’s best known star is Beta Cancri, also known by its Arab name Altarf (“the End”). This 3.5 magnitude star is located 290 light-years from Earth and is a binary star system that consists of a spectral type K4III orange giant and a magnitude 14 red dwarf. This system is also home to a confirmed exoplanet, beta Cancri b, which is a Super-Jupiter with an orbital period of over 600 days.

In terms of deep-sky objects, Cancer is best known as being the home of Messier Object 44 (aka. Praesepe, or the Beehive Cluster), an open cluster located in the center of the constellation. Located 577 light-years from Earth, it is one of the nearest open clusters to our Solar System. M44 contains about 50 stars, the brightest of which are of the sixth magnitude.

The smaller, denser open cluster of Messier Object 67 can also be found in Cancer, which is 2500 light-years from Earth and contains approximately 200 stars. And so can the famous quasar, QSO J0842+1835, which was used to measure the speed of gravity in the VLBI experiment conducted by Edward Fomalont and Sergei Kopeikin in September 2002.

The location of the Caner constellation. Credit: IAU

The active galaxy OJ 287 is also found in the Cancer constellation. Located 3.5 billion light years away from Earth, this galaxy has a central supermassive black hole that is one of the largest known (with 18 billion solar masses), and produces quasi-periodic optical outbursts. There is only one meteor shower associated with the constellation of Cancer, which is the Delta Cancrids. The peak date for this shower is on or about January 16t, and has been known to average only about 4 comets per hour (and the meteors are very swift).

Leo

Leo: July 23 – Aug. 22

Those born under the sign of Leo, which covers 120° to 150° of celestial longitude, carry the sign of The Lion – which is based on the Nemean Lion of Greek mythology, a lion that had an impenetrable hide. The sign of Leo is tied to the Fifth House, known in Latin as Nati (Children), or by its modern name, House of Pleasure. The sign of Leo is also associated with the element of Fire and the ruling celestial body of Leo is The Sun.

There are five annual meteor showers associated with the constellation Leo. The first is the Delta Leonid meteor stream, which begins between February 5th through March 19th every year. The activity peaks in late February, and the maximum amount of meteors averages around 5 per hour. The next is the Sigma Leonid meteor shower, which begins on April 17th. This is a very weak shower, with activity rates no higher than 1 to 2 per hour.

The next is the November Leonids, the largest and most dependable meteor shower associated with the Leo constellation. The peak date is November 17th, but activity occurs around 2 days on either side of the date. The radiant is near Regulus and this is the most spectacular of modern showers.

The constellation Leo. Credit: iau.org

The shower is made more spectacular by the appearance of the Temple-Tuttle comet, which adds fresh material to the stream when it is at perihelion. The last is the Leo Minorids, which peak on or about December 14th, which is believed to produce around 10 faint meteors per hour.

Leo is also home to some of the largest structures in the observable universe. This includes many bright galaxies, which includes the Leo Triplet (aka. the M60 group). This group of objects is made up of three spiral galaxies – Messier 65, Messier 66, and NGC 3628.

The Triplet is at a distance of 37 million light-years from Earth and has a somewhat distorted shape due to gravitational interactions with the other members of the Triplet, which are pulling stars away from M66. Both M65 and M66 are visible in large binoculars or small telescopes, but seeing them in all of their elongated glory requires a telescope.

In addition, it is also home to the famous objects Messier 95, Messier 96, and Messier 105. These are spiral galaxies, in the case of M95 and M96 (with M95 being a barred spiral), while Messier 105 is an elliptical galaxy which is known to have a supermassive black hole at its center. Then there is the Leo Ring (aka. Cosmic Horseshoe) a cloud of hydrogen and helium gas, that orbits two galaxies found within this constellation.

The notable gravitational lens known as the Cosmic Horseshoe is found in Leo. Credit: NASA/ESA/Hubble
The notable gravitational lens known as the Cosmic Horseshoe is found in Leo. Credit: NASA/ESA/Hubble


Virgo

Virgo: Aug. 23 – Sept. 22

The sign of Virgo, which covers 150° to 180° of celestial longitude, is represented by the The Maiden. Based on Astraea from Greek mythology, the maiden was the last immortal to abandon Earth at the end of the Silver Age, when the gods fled to Olympus. Virgo is part of the Sixth House – Valetudo (Health) in Latin, or House of Health in modern times. They are also associated with the element of Earth and the ruling celestial body of Virgo is Mercury.

The brightest star in the Virgo constellation is Spica, a binary and rotating ellipsoidal variable – which means the two stars are so close together that they are egg-shaped instead of spherical – located between 240 and 260 light years from Earth. The primary is a blue giant and a variable star of the Beta Cephei type.

Besides Spica, other bright stars in Virgo include Beta Virginis (Zavijava), Gamma Virginis (Porrima), Delta Virginis (Auva) and Epsilon Virginis (Vindemiatrix). Other fainter stars that were also given names are Zeta Virginis (Heze), Eta Virginis (Zaniah), Iota Virginis (Syrma) and Mu Virginis (Rijl al Awwa). Virgo’s stars are also home to a great many exoplanets, with 35 verified exoplanets orbiting 29 of its stars.

The star 70 Virginis was one of the first planetary systems to have a confirmed exoplanet discovered orbiting it, which is 7.5 times the mass of Jupiter. The star Chi Virginis has one of the most massive planets ever detected, at a mass of 11.1 times that of Jupiter. The sun-like star 61 Virginis has three planets: one is a super-Earth and two are Neptune-mass planets.

The constellation Virgo. Credit: iau.org


Libra

Libra: Sept. 23 – Oct. 22

The sign of Libra covers 180° to 210° of celestial longitude. It is represented by the symbol of The Scales, which is based on the Scales of Justice held by Themis, the Greek personification of divine law and custom and the inspiration for modern depictions of Lady Justice. Libra is part of the Seventh House – Uxor (Spouse) or House of Partnership, are associated with the element of Air, and the ruling celestial body is Venus.

Two notable stars in the Libra constellation are Alpha and Beta Librae – also known as Zubenelgenubi and Zubeneschamali, which translates to “The Southern Claw” and “The Northern Claw”. Alpha Libae is a double star consisting of an A3 primary star with a slight blue tinge and a fainter type F4 companion, both of which are located approximately 77 light years from our Sun.

Beta Librae is the brighter of the two, and the brightest star in the Virgo constellation. This is a blue star of spectral type B8 (but which appears somewhat greenish) which is located roughly 160 light years from Earth. Then there’s Gamma Librae (also called Zubenelakrab, which means “the Scorpion’s Claw”) which completes the Scorpion sign. It is an orange giant of magnitude 3.9, and is located 152 light-years from Earth.

The constellation Libra. Credit: iau.org

Libra is home to the star Gliese 581, which has a planetary system consisting of at least 6 planets. Both Gliese 581 d and Gliese 581 g are considered to be some of the most promising candidates for life. Gliese 581 c is considered to be the first Earth-like exoplanet to be found within its parent star’s habitable zone. All of these exoplanets are of significance for establishing the likelihood of life outside of the Solar System.

Libra is also home to one bright globular cluster, NGC 5897. It is a fairly large and loose cluster, has an integrated magnitude of 9, and is located 40,000 light-years from Earth.

Scorpio

Scorpio: Oct. 23 – Nov. 21

The sign of Scorpio covers 210° to 240° of celestial longitude. Scorpio is represented by The Scorpion, which is based on Scorpius – a giant scorpion in Greek mythology sent by Gaia to kill Orion. Scorpio is part of the Eighth House – Mors (Death), known today as the House of Reincarnation – and is associated with the element of Water. Traditionally, the ruling celestial body of Scorpio was Mars, but has since become Pluto.

The Scorpius constellations includes many bright stars, the brightest being Alpha Scorpii (aka. Antares). The name literally means “rival of Mars” because of its distinct reddish hue. Other stars of note include Beta Scorpii (Acrab, or “the scorpion”), Delta Scorpii (Dschubba, or “the forehead”), Xi Scorpii (Girtab, also “the scorpion”), and Sigma and Tau Scorpii (Alniyat, “the arteries”).

Lambda Scorpii (Shaula) and Upsilon Scorpii (Lesath) – whose names both mean “sting”- mark the tip of the scorpion’s curved tail. Given their proximity to one another, Lambda Scorpii and Upsilon Scorpii are sometimes referred to as “the Cat’s Eyes”.

The constellation Scorpius. Credit: iau.org

The Scorpius constellation, due to its position within the Milky Way, contains many deep-sky objects. These include the open clusters Messier 6 (the Butterfly Cluster) and Messier 7 (the Ptolemy Cluster), the open star cluster NGC 6231 (aka. Northern Jewel Box), and the globular clusters Messier 4 and Messier 80 (NGC 6093).

The constellation is also where the Alpha Scorpiids and Omega Scorpiids meteor showers take place. The Alphas begin on or about April 16th and end around May 9th, with a peak date of most activity on or about May 3rd. The second meteor shower, the Omega (or June) Scorpiids peaks on or about June 5th of each year. The radiant for this particular shower is closer to the Ophiuchus border and the activity rate on the peak date is high – with an average of about 20 meteors per hour and many reported fireballs.


Sagittarius

Sagittarius: Nov. 22 – Dec. 21

The sign of Sagittarius covers 240° to 270° of celestial longitude and is represented by The Archer. This symbol is based on the centaur Chiron, who according to Greek mythology mentored Achilles in the art of archery. Sagittarius is part of the Ninth House – known as Iter (Journeys) or the House of Philosophy. Sagittarius’ associated element is Fire (positive polarity), and the ruling celestial body is Jupiter.

Stars of note in the Sagittarius constellation include Alpha Sagittarii, which is also known as Alrami or Rukbat (literally “the archer’s knee”). Then there is Epsilon Sagittarii (“Kaus Australis” or “southern part of the bow”), the brightest star in the constellation – at magnitude 1.85. Beta Sagittarii, located at a position associated with the forelegs of the centaur, has the traditional name Arkab, which is Arabic for “achilles tendon.”

The Sagittarius constellation. Credit: iau.org

The second-brightest star is Sigma Sagittarii (“Nunki”), which is a B2V star at magnitude 2.08, approximately 260 light years from our Sun. Nunki is the oldest star name currently in use, having been assigned by the ancient Babylonians, and thought to represent the sacred Babylonian city of Eridu. Then there’s Gamma Sagittarii, otherwise known as Alnasl (the “arrowhead”). This is actually two star systems that share the same name, and both stars are actually discernible to the naked eye.

The Milky Way is at its densest near Sagittarius, since this is the direction in which the galactic center lies. Consequently, Sagittarius contains many star clusters and nebulae. This includes Messier 8 (the Lagoon Nebula), an emission (red) nebula located 5,000 light years from Earth which measures 140 by 60 light years.

Though it appears grey to the unaided eye, it is fairly pink when viewed through a telescope and quite bright (magnitude 3.0). The central area of the Lagoon Nebula is also known as the Hourglass Nebula, so named for its distinctive shape. Sagittarius is also home to the M17 Omega Nebula (also known as the Horseshoe or Swan Nebula).

This nebula is fairly bright (magnitude 6.0) and is located about 4890 light-years from Earth. Then there’s the Trifid Nebula (M20 or NGC 6514), an emission nebula that has reflection regions around the outside, making its exterior bluish and its interior pink. NGC 6559, a star forming region, is also associated with Sagittarius, located about 5000 light-years from Earth and showing both emission and reflection regions (blue and red).


Capricorn

Capricorn: Dec. 22 – Jan. 19

The sign of Capricorn spans 270° to 300° of celestial longitude and is represented by the Mountain Sea-Goat. This sign is based on Enki, the Sumerian primordial god of wisdom and waters who has the head and upper body of a mountain goat, and the lower body and tail of a fish. The sign is part of the Tenth House – Regnum (Kingdom), or The House of Social Status. Capricorns are associated with the element Earth, and the ruling body body is Saturn.

The constellation Capricornus. Credit: iau.org

The brightest star in Capricornus is Delta Capricorni, also called Deneb Algedi. Like other stars such as Denebola and Deneb, it is named for the Arabic word for “tail”, which in this case translates to “the tail of the goat’. Deneb Algedi is a eclipsing binary star with a magnitude of 2.9, and which is located 39 light-years from Earth.

Another bright star in the Capricorni constellation is Alpha Capricorni (Algedi or Geidi, Arabic for “the kid”), which is an optical double star (two stars that appear close together) – both o which are binaries. It’s primary (Alpha² Cap) is a yellow-hued giant of magnitude 3.6, located 109 light-years from Earth, while its secondary (Alpha¹ Cap) is a yellow-hued supergiant of magnitude 4.3, located 690 light-years from Earth.

Beta Capricorni is a double star known as Dabih, which comes from the Arabic phrase “the lucky stars of the slaughter” a reference to ritual sacrifices performed by ancient Arabs. Its primary is a yellow-hued giant star of magnitude 3.1, 340 light-years from Earth, while the secondary is a blue-white hued star of magnitude 6.1. Another visible star is Gamma Capricorni (aka. Nashira, “bringing good tidings”), which is a white-hued giant star of magnitude 3.7, 139 light-years from Earth.

Several galaxies and star clusters are contained within Capricornus. This includes Messier 30 (NGC 7099) a centrally-condensed globular cluster of magnitude 7.5. Located approximately 30,000 light-years from our Sun, it cannot be seen with the naked eye, but has chains of stars extending to the north that can be seen with a telescope.

Messier 30, imaged by the Hubble Telescope. Credit: NASA/Wikisky
The globular cluster Messier 30, imaged by the Hubble Telescope. Credit: NASA/Wikisky

And then there is the galaxy group known as HCG 87, a group of at least three galaxies located 400 million light-years from Earth. It contains a large elliptical galaxy, a face-on spiral galaxy, and an edge-on spiral galaxy. These three galaxies are interacting, as evidenced by the high amount of star formation in the face-on spiral, and the connecting stream of stars and dust between edge-on spiral and elliptical galaxy.

The constellation of Capricornus has one meteor shower associated with it. The Capricornid meteor stream peaks on or about July 30th and is active for about a week before and after, with an average fall rate is about 10 to 30 per hour.

Aquarius

Aquarius: Jan. 20 – Feb. 18

Aquarius, which spans 300° to 330° of celestial longitude, is represented by the Water Bearer. In ancient Greek mythology, Aquarius is Ganymede, the beautiful Phrygian youth who was snatched up by Zeus to become the cup-bearer of the Gods. Aquarius is part of the Eleventh House – Benefacta (Friendship), or House of Friendship, is associated with the element of Air. Traditionally, the ruling celestial body of Aquarius was Saturn, but has since changed to Uranus.

While Aquarius has no particularly bright stars, recent surveys have shown that there are twelve exoplanet systems within the constellation (as of 2013). Gliese 876, one of the nearest stars (15 light-years), was the first red dwarf start to be found to have a planetary system – which consists of four planets, one of which is a terrestrial Super-Earth. 91 Aquarii is an orange giant star orbited by one planet, 91 Aquarii b, a Super-Jupiter. And Gliese 849 is a red dwarf star orbited by the first known long-period Jupiter-like planet, Gliese 849 b.

The constellation Aquarius. Credit: iau.org

Aquarius is also associated with multiple Messier objects. M2 (NGC 7089) is located in Aquarius, which is an incredibly rich globular cluster located approximately 37,000 light-years from Earth. So is the four-star asterism M73 (which refers to a group of stars that appear to be related by their proximity to each other). Then there’s the small globular cluster M72, a globular cluster that lies a degree and half to the west of M73.

Aquarius is also home to several planetary nebulae. NGC 7293, also known as the Helix Nebula, is located at a distance of about 650 light years away, making it the closest planetary nebula to Earth. Then there’s the Saturn Nebula (NGC 7009) so-named because of its apparent resemblance to the planet Saturn through a telescope, with faint protrusions on either side that resemble Saturn’s rings.

There are five meteor showers associated with the constellation of Aquarius. The Southern Iota Aquarids begin around July 1st and end around September 18th, with the peak date occurring on August 6th with an hourly rate of 7-8 meteors average. The Northern Iota Aquarids occur between August 11th to September 10th, their maximum peak occurring on or about August 25th with an average of 5-10 meteors per hour.

Image of the Helix Nebula, combining from information from NASA's Spitzer Space Telescope and the Galaxy Evolution Explorer (GALEX). Credit: NASA
Image of the Helix Nebula, combining from information from NASA’s Spitzer Space Telescope and the Galaxy Evolution Explorer (GALEX). Credit: NASA

The Southern Delta Aquarids begin about July 14th and end around August 18th with a maximum hourly rate of 15-20 peaking on July 29th. The Northern Delta Aquarids usually begin around July 16th, and last through September 10th. The peak date occurs on or around August 13th with a maximum fall rate of about 10 meteors per hour.

Then there is the Eta Aquarid meteor shower, which begins about April 21th and ends around May 12th. It reaches its maximum on or about May 5th with a peak fall rate of up to 20 per hour for observers in the northern hemisphere and perhaps 50 per hour for observers in the southern hemisphere. Last, there is the March Aquarids, a daylight shower that may be associated with the Northern Iota Aquarid stream.


Pisces

Pisces: Feb. 19 – March 20

The sign of Pisces covers 330° to 360° of celestial longitude and is represented by the The Fish. This symbol is derived from the ichthyocentaurs – a pair of centaurian sea-gods that had the upper body of a male human, the lower front of a horse, and the tail of a fish – who aided Aphrodite when she was born from the sea. Pisces is part of the Twelfth House of Carcer (Prison), or The House of Self-Undoing, and are associated with the element of Water. The ruling celestial body of Pisces is traditionally Jupiter, but has since come to be Neptune.

The constellation Pisces. Credit: iau.org

Beta Piscium, also known as Samakah (the “Fish’s Mouth”), is a B-class hydrogen fusing dwarf star in the Pisces constellation. Located 495 light years from Earth, this star produces 750 times more than light than our own Sun and is believed to be 60 million years old. The brightest star in the constellation, Eta Piscium, is a bright class B star that is located 294 years away from our Solar System.

This star is also known by its Babylonian name, Kullat Nunu (which translates to “cord of the fish”), the Arab name Al Pherg (“pouring point of water”), and the Chinese name Yòu Gèng – which means “Official in Charge of the Pasturing“, referring to an asterism consisting of Eta Piscium and its immediate neighbors – Rho Piscium, Pi Piscium, Omicron Piscium, and 104 Piscium.

And then there’s van Maanen’s Star (aka. Van Maanen 2) a white dwarf that is located about 14 light years from our Sun, making it the third closest star of its kind to our system (after Sirius B and Procyon B). Gamma Piscium is a yellow-orange giant star located about 130 light years away, and is visible with just binoculars.

The Pisces constellationis also home to a number of deep-sky objects. These include M74, a loosely-wound spiral galaxy that lies at a distance of 30 million light years from our Sun. It has many clusters of young stars and the associated nebulae, showing extensive regions of star formation. Also, there’s CL 0024+1654, a massive galaxy cluster that is primarily made up of yellow elliptical and spiral galaxies.  CL 0024+1654 lies at a distance of 3.6 billion light-years from Earth and lenses the galaxy behind it (i.e. it creates arc-shaped images of the background galaxy).

Last, there the active galaxy and radio source known as 3C 31. Located at a distance of 237 million light-years from Earth, this galaxy has a supermassive black hole at its center. In addition to being the source of its radio waves, this black hole is also responsible for creating the massive jets that extend several million light-years in both directions from its center – making them some of the largest objects in the universe.

There is one annual meteor shower associated with Pisces which peaks on or about October 7 of each year. The Piscid meteor shower has a radiant near the Aries constellation and produces an average of 15 meteors per hour which have been clocked at speeds of up to 28 kilometers per second. As always, the meteoroid stream can begin a few days earlier and end a few days later than the expected peak and success on viewing depends on dark sky conditions.

Currently, the Vernal Equinox is currently located in Pisces. In astronomy, equinox is a moment in time at which the vernal point, celestial equator, and other such elements are taken to be used in the definition of a celestial coordinate system. Due to the precession of the equinoxes, the Vernal Equinox is slowly drifting towards Aquarius.

Astrology is a tradition that has been with us for thousands of years and continues to be observed by many people and cultures around the world. Today, countless people still consult their horoscope to see what the future has in store, and many more consider their birth sign to be of special significance.

And the fact that many people still consider it to be valid is an indication that superstitious and “magical” thinking is something we have yet to completely outgrow. But this goes to show how some cultural traditions are so enduring, and how people still like to ascribe supernatural powers to the universe.

We have a complete guide to all 88 constellations here at Universe Today. Research them at your leisure, and be sure to check out more than just the “zodiac sign” ones!

We also have a comprehensive list of all the Messier Objects in the night sky.

Astronomy Cast also has an episode on Zodiac Signs – Episode 319: The Zodiac

The Dwarf Planet Ceres

A view of Ceres in natural colour, pictured by the Dawn spacecraft in May 2015. Credit: NASA/ JPL/Planetary Society/Justin Cowart

The Asteroid Belt is a pretty interesting place. In addition to containing between 2.8 and 3.2 quintillion metric tons of matter, the region is also home to many minor planets. The largest of these, known as Ceres, is not only the largest minor planet in the Inner Solar System, but also the only body in this region to be designated as a “dwarf planet” by the International Astronomical Union (IAU).

Due to its size and shape, when it was first observed, Ceres was thought to be a planet. While this belief has since been revised, Ceres is alone amongst objects in the Asteroid Belt in that it is the only object massive enough to have become spherical in shape. And like most of the dwarf planets in our Solar System, its status remains controversial, and our knowledge of it limited.

Discovery and Naming:

Ceres was discovered by Giuseppe Piazzi on January 1st, 1801, while searching for zodiacal stars. However, the existence of Ceres had been predicted decades before by Johann Elert Bode, a German astronomer who speculated that there had to be a planet between Mars and Jupiter. The basis for this assumption was the now defunct Bode-Titus law, which was first proposed by Johann Daniel Titius in 1766.

This law stated that there existed a regular pattern in the semi-major axes of the orbits of known planets, the only exception of which was the large gap between Mars and Jupiter. In an attempt to resolve this, in 1800, German astronomer Franz Xaver von Zach sent requests to twenty-four experienced astronomers (dubbed the “Celestial Police”) to combine their their efforts to located this missing planet.

Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart. Credit: NASA.
Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart. Credit: NASA.

One of these astronomers was Giuseppe Piazzi at the Academy of Palermo, who had made the discovery shortly before his invitation to join the group had arrived. At the time of his discovery, he mistook it for a comet, but subsequent observations led him to declare that it could be something more. He officially shared his observations with friends and colleagues by April of 1801, and sent the information to von Zach to be published in September.

Unfortunately, due to its change in its apparent position, Ceres was too close to the Sun’s glare to be visible to astronomers. It would not be until the end of the year that it would be spotted again, thanks in large part to German astronomer Carl Freidrich Gauss and the predictions he made of its orbit. On December 31st, von Zach and his colleague Heinrich W.M. Olbers found Ceres near the position predicted by Gauss, and thus recovered it.

Piazzi originally suggesting naming his discovery Cerere Ferdinandea, after the Roman goddess of agriculture Ceres (Cerere in Italian) and King Ferdinand of Sicily. The name Ferdinand was dropped in other nations, but Ceres was eventually retained. Ceres was also called Hera for a short time in Germany; whereas in Greece, it is still called Demeter after the Greek equivalent of the Roman goddess Ceres.

Classification:

The classification of Ceres has changed more than once since its discovery, and remains the subject of controversy. For example, Johann Elert Bode – a contemporary of Piazzi –  believed Ceres to be the “missing planet” he had proposed to exist between Mars and Jupiter. Ceres was assigned a planetary symbol, and remained listed as a planet in astronomy books and tables (along with 2 Pallas, 3 Juno, and 4 Vesta) until the mid-19th century.

Ceres compared to asteroids visited to date, including Vesta, Dawn's mapping target in 2011. Image by NASA/ESA. Compiled by Paul Schenck.
Ceres compared to asteroids visited to date, including Vesta, Dawn’s mapping target in 2011. Credit: NASA/ESA/Paul Schenck.

As other objects were discovered in the neighborhood of Ceres, it was realized that Ceres represented the first of a new class of objects. In 1802, with the discovery of 2 Pallas, William Herschel coined the term asteroid (“star-like”) for these bodies. As the first such body to be discovered, Ceres was given the designation 1 Ceres under the modern system of minor-planet designations.

By the 1860s, the existence of a fundamental difference between asteroids such as Ceres and the major planets was widely accepted, though a precise definition of “planet” was never formulated. The 2006 debate surrounding Eris, Pluto, and what constitutes a planet led to Ceres being considered for reclassification as a planet.

The definition that was adopted on August 24th, 2006 carried the requirements that a planet have sufficient mass to assume hydrostatic equilibrium, be in orbit around a star and not be a satellite, and have cleared the neighborhood around its orbit. As it is, Ceres does not dominate its orbit, but shares it with the thousands of other asteroids, and constitutes only about a third of the mass of the Asteroid Belt. Bodies like Ceres that met some of these qualification, but not all, were instead classified as “dwarf planets”.

In addition to the controversy surrounding the use of this term, there is also the question of whether or not Ceres status as a dwarf planet means that it can no longer be considered an asteroid. The 2006 IAU decision never addressed whether Ceres is an asteroid or not. In fact, the IAU has never defined the word ‘asteroid’ at all, having preferred the term ‘minor planet’ until 2006, and the terms ‘small Solar System body’ and ‘dwarf planet’ thereafter.

Size, Mass and Orbit:

Early observations of Ceres were only able to calculate its size to within an order of magnitude. In 1802, English astronomer William Herschel underestimated its diameter as 260 km, whereas in 1811 Johann Hieronymus Schröter overestimated it as 2,613 km. Current estimates place its mean radius at 473 km, and its mass at roughly 9.39 × 1020 kg (the equivalent of 0.00015 Earths or 0.0128 Moons).

Size comparison of Vesta, Eros and Ceres and Eros
Size comparison of Vesta, Eros and Ceres. Credit: NASA/JPL

With this mass, Ceres comprises approximately a third of the estimated total mass of the asteroid belt (which is in turn approximately 4% of the mass of the Moon). The next largest objects are Vesta, Pallas and Hygiea, which have mean diameters of more than 400 km and masses of 2.6 x 1020 kg, 2.11 x 1020 kg, and 8.6 ×1019 kg respectively. The mass of Ceres is large enough to give it a nearly spherical shape, which  makes it unique amongst objects and minor planets in the Asteroid Belt.

Ceres follows a slightly inclined and moderately eccentric orbit, ranging from 2.5577 AU (382.6 million km) from the Sun at perihelion and 2.9773 AU (445.4 million km) at aphelion. It has an orbital period of 1,680 Earth days (4.6 years) and takes 0.3781 Earth days (9 hours and 4 minutes) to complete a sidereal rotation.

Composition and Atmosphere:

Based on its size and density (2.16 g/cm³), Ceres is believed to be differentiated between a rocky core and an icy mantle. Based on evidence provided by the Keck telescope in 2002, the mantle is estimated to be 100 km-thick, and contains up to 200 million cubic km of water – which is more fresh water than exists on Earth. Infrared data on the surface also suggests that Ceres may have an ocean beneath its icy mantle.

If true, it is possible that this ocean could harbor microbial extraterrestrial life, similar to what has been proposed about Mars, Titan, Europa and Enceladus. It has further been hypothesized that ejecta from Ceres could have sent microbes to Earth in the past.

Other possible surface constituents include iron-rich clay minerals (cronstedtite) and carbonate minerals (dolomite and siderite), which are common minerals in carbonaceous chondrite meteorites. The surface of Ceres is relatively warm, with the maximum temperature estimated to reach approximately 235 K (-38 °C, -36 °F) when the Sun is overhead.

Assuming the presence of sufficient antifreeze (such as ammonia), the water ice would become unstable at this temperature. Therefore, it is possible that Ceres may have a tenuous atmosphere caused by outgassing from water ice on the surface. The detection of significant amounts of hydroxide ions near Ceres’ north pole, which is a product of water vapor dissociation by ultraviolet solar radiation, is another indication of this.

However, it was not until early 2014 that several localized mid-latitude sources of water vapor were detected on Ceres. Possible mechanisms for the vapor release include sublimation from exposed surface ice (as with comets), cryovolcanic eruptions resulting from internal heat, and subsurface pressurization. The limited amount of data suggests that the vaporization is more consistent with cometary-style sublimation.

Origin:

Multiple theories exist as to the origin of Ceres. On the one hand, it is widely believed that Ceres is a surviving protoplanet which formed 4.57 billion year ago in the Asteroid Belt. Unlike other inner Solar System protoplanets, Ceres neither merged with others to form a terrestrial planet and avoided being ejected from the Solar System by Jupiter. However, there is an alternate theory that proposes that Ceres formed in the Kuiper belt and later migrated to the asteroid belt.

The geological evolution of Ceres is dependent on the heat sources that were available during and after its formation, which would have been provided by friction from planetesimal accretion and decay of various radionuclides. These are thought to have been sufficient to allow Ceres to differentiate into a rocky core and icy mantle soon after its formation. This icy surface would have gradually sublimated, leaving behind various hydrated minerals like clay minerals and carbonates.

Today, Ceres appears to be a geologically inactive body, with a surface sculpted only by impacts. The presence of significant amounts of water ice in its composition is what has led scientists to the possible conclusion that Ceres has or had a layer of liquid water in its interior.

Exploration:

Until recently, very few direct observations had been made of Ceres and little was known about its surface features. In 1995, the Hubble Space Telescope captured high-resolutions images that showed a dark spot in the surface that was thought to be a crater – and nicknamed “Piazzi” after its founder.

The near-infrared images taken by the Keck telescope in 2002 showed several bright and dark features moving with Ceres’s rotation. Two of the dark features had circular shapes and were presumed to be craters. One was identified as the “Piazzi” feature, while the other was observed to have a bright central region. In 2003 and 2004, visible-light images were taken by Hubble during a full rotation that showed 11 recognizable surface features, the natures of which are yet undetermined.

With the launch of the Dawn mission, with which NASA intends to conduct a nearly decade-long study of Ceres and Vesta, much more has been learned about this dwarf planet. For instance, after achieving orbit around the asteroid in March of 2015, Dawn revealed a large number of surface craters with low relief, indicating that they mark a relatively soft surface, most likely made of water ice.

Several bright spots have also been observed by Dawn, the brightest of which (“Spot 5”) is located in the middle of an 80 km (50 mi) crater called Occator. These bright features have an albedo of approximately 40% that are caused by a substance on the surface, possibly ice or salts, reflecting sunlight. A haze periodically appears above Spot 5, supporting the hypothesis that some sort of outgassing or sublimating ice formed the bright spots.

The Dawn spacecraft also noted the presence of a towering 6 kilometer-tall mountain (4 miles or 20,000 feet) in early August, 2015. This mountain, which is roughly pyramidal in shape and protrudes above otherwise smooth terrain, appears to be the only mountain of its kind on Ceres.

Like so many celestial bodies in our Solar System, Ceres is a mystery that scientists and astronomers are working to slowly unravel. In time, our exploration of this world will likely teach us much about the history and evolution of our Solar System, and may even lead to the discovery of life beyond Earth.

We have many interesting articles on Ceres here at Universe Today. For example, here are some articles on the many bright spots captured by the Dawn probe, and what they likely are.

And here are some articles on the Asteroid Belt and Why it Isn’t a Planet.

For more information, check out NASA’s Dawn – Ceres and Vesta and Dwarf Planets: Overview.

The Dwarf Planet Pluto

Pluto was re-classified as a dwarf planet based on our growing understanding of its nature. Will Schlaufman's new study help us more accurately classify gas giants and brown dwarfs? NASA's New Horizons spacecraft captured this high-resolution enhanced color view of Pluto on July 14, 2015. Credit: NASA/JHUAPL/SwRI
Pluto was re-classified as a dwarf planet based on our growing understanding of its nature. Will Schlaufman's new study help us more accurately classify gas giants and brown dwarfs? NASA's New Horizons spacecraft captured this high-resolution enhanced color view of Pluto on July 14, 2015. Credit: NASA/JHUAPL/SwRI

After being officially discovered by Clyde Tombaugh in 1930, Pluto spent close to a century being thought of as the ninth planet of our Solar System. In 2006, it was reclassified as a “dwarf planet” due to the discovery of other Trans-Neptunian Objects (TNOs) of comparable size. However, that does not change its significance in our galaxy. In addition to being the largest TNO, it is the largest and second-most massive dwarf planet of our Solar System.

As a result, a great deal of time and study has been devoted to this former planet. And with the successful flyby of the New Horizons mission this month, we finally have a clear picture of what it looks like. As scientists pour over the voluminous amounts of data being sent back, our understanding of this world at the edge of our Solar System has grown by leaps and bounds.

Discovery:

The existence of Pluto was predicted before it was observed. In the 1840s, French mathematician Ubrain Le Verrier used Newtonian mechanics to predict the position of Neptune (which had not yet been discovered) based on the perturbation of Uranus. By the late 19th century, subsequent observations of Neptune led astronomers to believe that a planet was perturbing its orbit as well.

In 1906, Percival Lowell – an American mathematician and astronomer who founded the Lowell Observatory in Flagstaff, Arizona, in 1894 – initiated a project to locate “Planet X”, the possible ninth planet of the Solar System. Unfortunately, Lowell died in 1916 before a confirmed discovery was made. But unbeknownst to him, his surveys had captured two faint images of Pluto (March 19th and April 7th, 1915), which were not recognized for what they were.

The discovery photographs of Pluto, dated January 23rd and 29th , 1930. Credit: Lowell Observatory Archives
The discovery photographs of Pluto, dated January 23rd and 29th , 1930. Credit: Lowell Observatory Archives

After Lowell’s death, the search did not resume until 1929, at which point the director of the Lowell Observatory (Vesto Melvin Slipher) entrusted the job of locating Planet X to Clyde Tombaugh. A 23 year-old astronomer from Kansas, Tombaugh spent the next year photographing sections of the night sky and then analyzing the photographs to determine if any objects had shifted position.

On February 18th, 1930, Tombaugh discovered a possible moving object on photographic plates taken in January of that year. After the observatory obtained further photographs to confirm the existence of the object, news of the discovery was telegraphed to the Harvard College Observatory on March 13th, 1930. The mysterious Planet X had finally been discovered.

Naming:

After the discovery was announced, the Lowell Observatory was flooded with suggestions for names. The name Pluto, based on the Roman god of the underworld, was proposed by Venetia Burney (1918–2009), a then eleven-year-old schoolgirl in Oxford, England. She suggested it in a conversation with her grandfather who passed the name on to astronomy professor Herbert Hall Turner, who cabled it to colleagues in the United States.

Pluto's surface as viewed from the Hubble Space Telescope in several pictures taken in 2002 and 2003. Though the telescope is a powerful tool, the dwarf planet is so small that it is difficult to resolve its surface. Astronomers noted a bright spot (180 degrees) with an unusual abundance of carbon monoxide frost. Credit: NASA
Pluto’s surface as viewed from the Hubble Space Telescope in several pictures taken in 2002 and 2003. Credit: NASA/Hubble

The object was officially named on March 24th, 1930, and it came down to a vote between three possibilities – Minerva, Cronus, and Pluto. Every member of the Lowell Observatory voted for Pluto, and the name was announced on May 1st, 1930. The choice was based on part on the fact that the first two letters of Pluto – P and L – corresponded to the initials of Percival Lowell.

The name quickly caught on with the general public. In 1930, Walt Disney was apparently inspired by it when he introduced a canine companion for Mickey Mouse named Pluto. In 1941, Glenn T. Seaborg named the newly created element plutonium after Pluto. This was in keeping with the tradition of naming elements after newly discovered planets – such as uranium, which was named after Uranus; and neptunium, which was named after Neptune.

Size, Mass and Orbit:

With a mass of 1.305±0.007 x 1o²² kg – which is the equivalent of 0.00218 Earths and 0.178 Moons – Pluto is the second most-massive dwarf planet and the tenth-most-massive known object directly orbiting the Sun. It has a surface area of 1.765×107 km, and a volume of 6.97×109 km3.

Map of Pluto, with (informal) names for some of the largest surface features. Credit: NASA/JHUAPL
Map of Pluto’s surface features, with (informal) names for some of the largest surface features. Credit: NASA/JHUAPL

Pluto has a moderately eccentric and inclined orbit, which ranges from 29.657 AU (4.4 billion km) at perihelion to 48.871 AU (7.3 billion km) at aphelion. This means that Pluto periodically comes closer to the Sun than Neptune, but a stable orbital resonance with Neptune prevents them from colliding.

Pluto has an orbital period of 247.68 Earth years, meaning it takes almost 250 years to complete a single orbit of the Sun. Meanwhile, its rotation period (a single day) is equal to 6.39 Earth days. Like Uranus, Pluto rotates on its side, with an axial tilt of 120° relative to its orbital plane, which results in extreme seasonal variations. At its solstices, one-fourth of its surface is in continuous daylight, whereas another fourth is in continuous darkness.

Composition and Atmosphere:

With a mean density of 1.87 g/cm3, Pluto’s composition is differentiated between an icy mantle and a rocky core. The surface is composed of more than 98% nitrogen ice, with traces of methane and carbon monoxide. The surface is very varied, with large differences in both brightness and color. A  notable feature is a large, pale area nicknamed the “Heart”.

The Theoretical structure of Pluto, consisting of 1. Frozen nitrogen 2. Water ice 3. Rock. Credit: NASA/Pat Rawlings
The theoretical structure of Pluto, consisting of 1. Frozen nitrogen 2. Water ice 3. Rock. Credit: NASA/Pat Rawlings

Scientists also suspect that Pluto’s internal structure is differentiated, with the rocky material having settled into a dense core surrounded by a mantle of water ice. The diameter of the core is believed to be approximately 1700 km, 70% of Pluto’s diameter. Thanks to the decay of radioactive elements, it is possible that Pluto contains a subsurface ocean layer that is 100 to 180 km thick at the core–mantle boundary.

Pluto has a thin atmosphere consisting of nitrogen (N2), methane (CH4), and carbon monoxide (CO), which are in equilibrium with their ices on Pluto’s surface. However, the planet is so cold that during part of its orbit, the atmosphere congeals and falls to the surface. The average surface temperature is 44 K (-229 °C), ranging from 33 K (-240 °C) at aphelion to 55 K (-218 °C) at perihelion.

Satellites:

Pluto has five known satellites. The largest, and closest in orbit to Pluto, is Charon. This moon was first identified in 1978 by astronomer James Christy using photographic plates from the United States Naval Observatory (USNO) in Washington, D.C. Beyond Charon lies the four other circumbinary moons – Styx, Nix, Kerberos, and Hydra, respectively.

Nix and Hydra were discovered simultaneously in 2005 by the Pluto Companion Search Team using the Hubble Space Telescope. The same team discovered Kerberos in 2011. The fifth and final satellite, Styx, was discovered by the New Horizons spacecraft in 2012 while capturing images of Pluto and Charon.

Artist's concept comparing the scale and brightness of the moons of Pluto. Credit: NASA/ESA/M. Showalter
Artist’s concept comparing the scale and brightness of the moons of Pluto. Credit: NASA/ESA/M. Showalter

Charon, Styx and Kerberos are all massive enough to have collapsed into a spheroid shape under their own gravity. Nix and Hydra, meanwhile, are oblong in shape. The Pluto-Charon system is unusual, since it is one of the few systems in the Solar System whose barycenter lies above the primary’s surface. In short, Pluto and Charon orbit each other, causing some scientists to claim that it is a “double-dwarf system” instead of a dwarf planet and an orbiting moon.

In addition, it is unusual in that each body is tidally locked to the other. Charon and Pluto always present the same face to each other; and from any position on either body, the other is always at the same position in the sky, or always obscured. This also means that the rotation period of each is equal to the time it takes the entire system to rotate around its common center of gravity.

In 2007, observations by the Gemini Observatory of patches of ammonia hydrates and water crystals on the surface of Charon suggested the presence of active cryo-geysers. This would seem indicate that Pluto does have a subsurface ocean that is warm in temperature, and that the core is geologically active. Pluto’s moons are believed to have been formed by a collision between Pluto and a similar-sized body early in the history of the Solar System. The collision released material that consolidated into the moons around Pluto.

Classification:

From 1992 onward, many bodies were discovered orbiting in the same area as Pluto, showing that Pluto is part of a population of objects called the Kuiper Belt. This placed its official status as a planet in question, with many asking whether Pluto should be considered separately or as part of its surrounding population – much as Ceres, Pallas, Juno and Vesta, which lost their planet status after the discovery of the Asteroid Belt.

On July 29h, 2005, the discovery of a new Trans-Neptunian Object (TNO), Eris, was announced, which was thought to be substantially larger than Pluto. Initially referred to the as the Solar System’s “tenth planet”, there was no consensus on whether or not Eris constituted the planet. What’s more, others in the astronomic community considered its discovery the strongest argument for reclassifying Pluto as a minor planet.

The debate came to a head on August 24th, 2006 with an IAU resolution that created an official definition for the term “planet”. According to the XXVI General Assembly of the International Astronomical Union, a planet must meet three criteria: it needs to be in orbit around the Sun, it needs to have enough gravity to pull itself into a spherical shape, and it needs to have cleared its orbit of other objects.

Pluto fails to meet the third condition, because its mass is only 0.07 times that of the mass of the other objects in its orbit. The IAU further decided that bodies that do not meet criterion 3 would be called dwarf planets. On September 13th, 2006, the IAU included Pluto, and Eris and its moon Dysnomia, in their Minor Planet Catalog.

The IAUs decision was met with mixed reactions, especially from within the scientific community. For instance, Alan Stern, the principal investigator with NASA’s New Horizons mission to Pluto, and Marc W. Buie – an astronomer with the Lowell Observatory – have both openly voiced dissatisfaction with the reclassification. Others, such as Mike Brown – the astronomer who discovered Eris – have voiced their support.

Our evolving understanding of Pluto, represented by images taken by Hubble in 2002-3 (left), and images taken by New Horizons in 2015 (right). Credit: theguardian.com
Our evolving understanding of Pluto, represented by images taken by Hubble in 2002-3 (left), and images taken by New Horizons in 2015 (right). Credit: theguardian.com

On August 14th – 16th, 2008, in what came to be known as “The Great Planet Debate“, researchers on both sides of the issue gathered at Johns Hopkins University Applied Physics Laboratory. Unfortunately, no scientific consensus was reached; but on June 11th 2008, the IAU announced in a press release that the term “plutoid” would henceforth be used to refer to Pluto and other similar objects.

Exploration:

Pluto presents significant challenges for spacecraft because of its small mass and great distance from Earth. In 1980, NASA began to contemplate sending the Voyager 1 spacecraft on a flyby of Pluto. However, the controllers opted instead for a close flyby of Saturn’s moon Titan, resulting in a trajectory incompatible with a Pluto flyby.

Voyager 2 never had a plausible trajectory for reaching Pluto, but it’s flyby Neptune and Triton in 1989 led scientists to once again begin contemplating a mission that would take a spacecraft to Pluto for the sake of studying the Kuiper Belt and Kuiper Belt Objects (KBOs). This led to the formation of the Pluto Kuiper Express mission proposal, and NASA instructing the JPL to being planning for a Pluto, Kuiper Belt flyby.

By 2000, the program had been scrapped due to apparent budget concerns. After much pressure had been brought to bear by the scientific community, a revised mission to Pluto, dubbed New Horizons, was finally granted funding from the US government in 2003. New Horizons was launched successfully on January 19th, 2006.

From September 21st-24th, 2006, New Horizons managed to capture its first images of Pluto while testing the LORRI instruments. These images, which were taken from a distance of approximately 4,200,000,000 km (2.6×109 mi) or 28.07 AU and released on November 28th, confirmed the spacecraft’s ability to track distant targets.

Distant-encounter operations at Pluto began on January 4th, 2015. Between January 25th to 31st, the approaching probe took several images of Pluto, which were released by NASA on February 12th. These photos, which were taken at a distance of more than 203,000,000 km (126,000,000 mi) showed Pluto and its largest moon, Charon.

Pluto
Pluto and Charon, captured by the New Horizons spacecraft from January 25th to 31st. Credit: NASA

The New Horizons spacecraft made its closest approach to Pluto at 07:49:57 EDT (11:49:57 UTC) on July 14th, 2015, and then Charon at 08:03:50 EDT (12:03:50 UTC). Telemetries confirming a successful flyby and the health of the spacecraft reached Earth on 20:52:37 EDT (00:52:37 UTC).

During the flyby, the probe captured the clearest pictures of Pluto to date, and full analyses of the data obtained is expected to take years to process. The spacecraft is currently traveling at a speed of 14.52 km/s (9.02 mi/s) relative to the Sun and at 13.77 km/s (8.56 mi/s) relative to Pluto.

Though the New Horizons mission has shown us much about Pluto – and will continue to do so as scientists pour over all the data collected by the probe’s instruments – we still have much to learn about this distant and mysterious world. In time, and with more missions to the outer Solar System, we may eventually be able to unlock some of its deeper mysteries.

Artist's impression of the New Horizons spacecraft in orbit around Pluto (Charon is seen in the background). Credit: NASA/JPL
Artist’s impression of the New Horizons spacecraft in orbit around Pluto (Charon is seen in the background). Credit: NASA/JPL

Until then, we offer all information that is currently available on Pluto. We hope that you find what you are looking for in the links below and, as always, enjoy your research!

Characteristics of Pluto:

Movement and Location of Pluto:

Moons of Pluto:

History of Pluto:

Features of Pluto:

Other Pluto Articles:

Mathematics: The Beautiful Language of the Universe

Let us discuss the very nature of the cosmos. What you may find in this discussion is not what you expect. Going into a conversation about the universe as a whole, you would imagine a story full of wondrous events such as stellar collapse, galactic collisions, strange occurrences with particles, and even cataclysmic eruptions of energy. You may be expecting a story stretching the breadth of time as we understand it, starting from the Big Bang and landing you here, your eyes soaking in the photons being emitted from your screen. Of course, the story is grand. But there is an additional side to this amazing assortment of events that oftentimes is overlooked; that is until you truly attempt to understand what is going on. Behind all of those fantastic realizations, there is a mechanism at work that allows for us to discover all that you enjoy learning about. That mechanism is mathematics, and without it the universe would still be shrouded in darkness. In this article, I will attempt to persuade you that math isn’t some arbitrary and sometimes pointless mental task that society makes it out to be, and instead show you that it is a language we use to communicate with the stars.

We are currently bound to our solar system. This statement is actually better than it sounds, as being bound to our solar system is one major step up from being bound simply to our planet, as we were

A defining moment for humanity: Galileo turing his spyglass towards the sky
A defining moment for humanity: Galileo turing his spyglass towards the sky

before some very important minds elected to turn their geniuses toward the heavens. Before those like Galileo, who aimed his spyglass towards the sky, or Kepler discovering that planets move about the sun in ellipses, or Newton discovering a gravitational constant, mathematics was somewhat  limited, and our understanding of the universe rather ignorant. At its core, mathematics allows a species bound to its solar system to probe the depths of the cosmos from behind a desk. Now, in order to appreciate the wonder that is mathematics, we must first step back and briefly look at its beginnings and how it is integrally tied into our very existence.

Mathematics almost certainly came about from very early human tribes (predating Babylonian culture which is attributed to some of the first organized mathematics in recorded history), that may have used math as a way of keeping track of lunar or solar cycles, and keeping count of animals, food and/or people by leaders. It is as natural as when you are a young child and you can see that you have

Ancient Babylonian tablet displaying early mathematics
Ancient Babylonian tablet displaying early mathematics

one toy plus one other toy, meaning you have more than one toy. As you get older, you develop the ability to see that 1+1=2, and thus simple arithmetic seems to be interwoven into our very nature. Those that profess that they don’t have a mind for math are sadly mistaken because just as we all have a mind for breathing, or blinking, we all have this innate ability to understand arithmetic. Mathematics is both a natural occurrence and a human designed system. It would appear that nature grants us this ability to recognize patterns in the form of arithmetic, and then we systematically construct more complex mathematical systems that aren’t obvious in nature but let us further communicate with nature.

All this aside, mathematics developed alongside of human development, and carried on similarly with each culture that was developing it simultaneously. It’s a wonderful observation to see that cultures that had no contact with one another were developing similar mathematical constructs without conversing. However, it wasn’t until mankind decidedly turned their mathematical wonder towards the sky that math truly began to develop in an astonishing way. It is by no mere coincidence that our scientific revolution was spurred by the development of more advanced mathematics built not to tally sheep or people, but rather to further our understandings of our place within the universe. Once Galileo began measuring the rates at which objects fell in an attempt to show mathematically that the mass of an object had little to do with the speed in which it fell, mankind’s future would forever be altered.

This is where the cosmic perspective ties in to our want to further our mathematical knowledge. If it were not for math, we would still think we were on one of a few planets orbiting a star amidst the backdrop of seemingly motionless lights. This is a rather bleak outlook today compared to what we now know

Johannes Kepler used mathematics to model his observations of the planets.
Johannes Kepler used mathematics to model his observations of the planets.

about the awesomely large universe we reside in. This idea of the universe motivating us to understand more about mathematics can be inscribed in how Johannes Kepler used what he observed the planets doing, and then applied mathematics to it to develop a fairly accurate model (and method for predicting planetary motion) of the solar system. This is one of many demonstrations that illustrate the importance of mathematics within our history, especially within astronomy and physics.

The story of mathematics becomes even more amazing as we push forward to one of the most advanced thinkers humanity has ever known. Sir Isaac Newton, when pondering the motions of Halley’s Comet, came to the realization that the math that had been used thus far to describe physical motion of massive

Isaac Newton
Isaac Newton

bodies, simply would not suffice if we were to ever understand anything beyond that of our seemingly limited celestial nook. In a show of pure brilliance that lends validity to my earlier statement about how we can take what we naturally have and then construct a more complex system upon it, Newton developed the Calculus in which this way of approaching moving bodies, he was able to accurately model the motion of not only Halley’s comet, but also any other heavenly body that moved across the sky.

In one instant, our entire universe opened up before us, unlocking almost unlimited abilities for us to converse with the cosmos as never before. Newton also expanded upon what Kepler started. Newton recognized that Kepler’s mathematical equation for planetary motion, Kepler’s 3rd Law ( P2=A3 ), was purely based on empirical observation, and was only meant to measure what we observed within our solar system. Newton’s mathematical brilliance was in realizing that this basic equation could be made universal by applying a gravitational constant to the equation, in which gave birth to perhaps one of the most important equations to ever be derived by mankind; Newton’s Version of Kepler’s Third Law.

You can still see where Kepler's 3rd Law remains, but with the added values of the gravitational constant G, and M and m representing the masses of the two bodies in question, this equation is no longer restricted to just our solar system
You can still see where Kepler’s 3rd Law remains, but with the added values of the gravitational constant G, and M and m representing the masses of the two bodies in question, this equation is no longer restricted to just our solar system

What Newton realized was that when things move in non-linear ways, using basic Algebra would not produce the correct answer. Herein lays one of the main differences between Algebra and Calculus. Algebra allows one to find the slope (rate of change) of straight lines (constant rate of change), whereas Calculus allows one to find the slope of curved lines (variable rate of change). There are obviously many more applications of Calculus than just this, but I am merely illustrating a fundamental difference between the two in order to show you just how revolutionary this new concept was. All at once, the motions of planets and other objects that orbit the sun became more accurately measurable, and thus we gained the ability to understand the universe a little deeper. Referring back to Netwon’s Version of Kepler’s Third Law, we were now able to apply (and still do) this incredible physics equation to almost anything that is orbiting something else. From this equation, we can determine the mass of either of the objects, the distance apart they are from each other, the force of gravity that is exerted between the two, and other physical qualities built from these simple calculations.

With his understanding of mathematics, Newton was able to derive the aforementioned gravitational constant for all objects in the universe ( G = 6.672×10-11 N m2 kg-2 ). This constant allowed him to unify astronomy and physics which then permitted predictions about how things moved in the universe. We could now measure the masses of planets (and the sun) more accurately, simply according to Newtonian physics (aptly named to honor just how important Newton was within physics and mathematics). We could now apply this newfound language to the cosmos, and begin coercing it to divulge its secrets. This was a defining moment for humanity, in that all of those things that prohibited our understandings prior to this new form of math were now at our fingertips, ready to be discovered. This is the brilliance of understanding Calculus, in that you are speaking the language of the stars.

There perhaps is no better illustration of the power that mathematics awarded us then in the discovery of the planet Neptune. Up until its discovery in September of 1846, planets were discovered simply by observing certain “stars” that were moving against the backdrop of all the other stars in odd ways. The term planet is Greek for “wanderer”, in that these peculiar stars wandered across the sky in noticeable patterns at different times of the year. Once the telescope was first turned upwards towards the sky by Galileo, these wanderers resolved into other worlds that appeared to be like ours. If fact, some of these worlds appeared to be little solar systems themselves, as Galileo discovered when he began recording the moons of Jupiter as they orbited around it.

After Newton presented his physics equations to the world, mathematicians were ready and excited to begin applying them to what we had been keeping track of for years. It was as if we were thirsty for the knowledge, and finally someone turned on the faucet. We began measuring the motions of the planets and gaining more accurate models for how they behaved. We used these equations to approximate the mass of the Sun. We were able to make remarkable predictions that were validated time and again simply by observation. What we were doing was unprecedented, as we were using mathematics to make almost impossible to know predictions that you would think we could never make without actually going to these planets, and then using actual observation to prove the math correct. However, what we also did was begin to figure out some odd discrepancies with certain things. Uranus, for instance, was behaving not as it should according to Newton’s laws.

Here you can see that the inner planet is being perturbed by the outer planet, in our situation, that outer planet was Neptune, not yet discovered.
Here you can see that the inner planet is being perturbed by the outer planet. In our situation, that outer planet was Neptune, which had yet to be discovered.

What makes the discovery of Neptune so wonderful was the manner in which it was discovered. What Newton had done was uncover a deeper language of the cosmos, in which the universe was able to reveal more to us. And this is exactly what happened when we applied this language to the orbit of Uranus. The manner in which Uranus orbited was curious and did not fit what it should have if it was the only planet that far out from the sun. Looking at the numbers, there had to be something else out there perturbing its orbit. Now, before Newton’s mathematical insights and laws, we would have had no reason to suspect anything was wrong in what we observed. Uranus orbited in the way Uranus orbited; it was just how it was. But, again revisiting that notion of mathematics being an ever increasing dialogue with the universe, once we asked the question in the right format, we realized that there really must be something else beyond what we couldn’t see. This is the beauty of mathematics writ large; an ongoing conversation with the universe in which more than we may expect is revealed.

It came to a French mathematician Urbain Le Verrier who sat down and painstakingly worked through the mathematical equations of the orbit of Uranus. What he was doing was using Newton’s mathematical equations backwards, realizing that there must be an object out there beyond the orbit of Uranus that was also orbiting the sun,

French mathematician who discovered the planet Neptune by using only mathematics
French mathematician who discovered the planet Neptune by using only mathematics

and then looking to apply the right mass and distance that this unseen object required for perturbing the orbit of Uranus in the way we were observing it was. This was phenomenal, as we were using parchment and ink to find a planet that nobody had ever actually observed. What he found was that an object, soon to be Neptune, had to be orbiting at a specific distance from the sun, with the specific mass that would cause the irregularities in the orbital path of Uranus. Confident of his mathematical calculations, he took his numbers to the New Berlin Observatory, where the astronomer Johann Gottfried Galle looked exactly where Verrier’s calculations told him to look, and there lay the 8th and final planet of our solar system, less than 1 degree off from where Verrier’s calculations said for him to look. What had just happened was an incredible confirmation of Newton’s gravitational theory and proved that his mathematics were correct.

Are There Oceans on Neptune
Neptune is more than just the 8th planet in our solar system; it is a celestial reminder of the power that mathematics grants us.

These types of mathematical insights continued on long after Newton. Eventually, we began to learn much more about the universe with the advent of better technology (brought about by advances in mathematics). As we moved into the 20th century, quantum theory began to take shape, and we soon realized that Newtonian physics and mathematics seemed to hold no sway over what we observed on the quantum level. In another momentous event in human history, yet again brought forth by the advancement in mathematics, Albert Einstein unveiled his theories of General and Special Relativity, which was a new way to look not only at gravity, but

Einstein's Relativity, yet another momentous advancement for humanity brought forth from an ongoing mathematical dialogue. Image via Pixabay.
Einstein’s equation for the energy-mass equivalency, yet another incredible advancement for humanity brought forth from an ongoing mathematical dialogue. Image via Pixabay.

also on energy and the universe in general. What Einstein’s mathematics did was allow for us to yet again uncover an even deeper dialogue with the universe, in which we began to understand its origins.

Continuing this trend of advancing our understandings, what we have realized is that now there are two sects of physics that do not entirely align. Newtonian or “classical” physics, that works extraordinarily well with the very large (motions of planets, galaxies, etc…) and quantum physics that explains the extremely small (the interactions of sub-atomic particles, light, etc…). Currently, these two areas of physics are not in alignment, much like two different dialects of a language. They are similar and they both work, but they are not easily reconcilable with one another. One of the greatest challenges we face today is attempting to create a mathematical grand “theory of everything” which either unites the laws in the quantum world with that of the macroscopic world, or to work to explain everything solely in terms of quantum mechanics. This is no easy task, but we are striving forward nonetheless.

As you can see, mathematics is more than just a set of vague equations and complex rules that you are required to memorize. Mathematics is the language of the universe, and in learning this language, you are opening yourself up the core mechanisms by which the cosmos operates. It is the same as traveling to a new land, and slowly picking up on the native language so that you may begin to learn from them. This mathematical endeavor is what allows us, a species bound to our solar system, to explore the depths of the universe. As of now, there simply is no way for us to travel to the center of our galaxy and observe the supermassive black hole there to visually confirm its existence. There is no way for us to venture out into a Dark Nebula and watch in real time a star being born. Yet, through mathematics, we are able to understand how these things exist and work. When you set about to learn math, you are not only expanding your mind, but you are connecting with the universe on a fundamental level. You can, from your desk, explore the awesome physics at the event horizon of a black hole, or bear witness to the destructive fury behind a supernova. All of those things that I mentioned at the beginning of this article come into focus through mathematics. The grand story of the universe is written in mathematics, and our ability to translate those numbers into the events that we all love to learn about is nothing short of amazing. So remember, when you are presented with the opportunity to learn math, accept every bit of it because math connects us to the stars.

We are connected to the universe through mathematics...
We are connected to the universe through mathematics…

 

Beyond “Fermi’s Paradox” I: A Lunchtime Conversation- Enrico Fermi and Extraterrestrial Intelligence

Nuclear physicist Enrico Fermi won the 1938 Nobel Prize for a technique he developed to probe the atomic nucleus. He led the team that developed the world's first nuclear reactor, and played a central role in the Manhattan Project that developed the atomic bomb during World War II. In the debate over extraterrestrial intelligence, he is best known for posing the question 'Where is everybody?' during a lunchtime discussion at Los Alamos National Laboratory. His question was seen as the basis for the "Fermi Paradox". Credit: Smithsonian Institution Archives.

Welcome back to our Fermi Paradox series, where we take a look at possible resolutions to Enrico Fermi’s famous question, “Where Is Everybody?” Today, we examine the lunchtime conversation that started it all!

It’s become a kind of legend, like Newton and the apple or George Washington and the cherry tree. One day in 1950, the great physicist Enrico Fermi sat down to lunch with colleagues at the Fuller Lodge at Los Alamos National Laboratory in New Mexico and came up with a powerful argument about the existence of extraterrestrial intelligence, the so-called “Fermi paradox”.

But like many legends, it’s only partly true. Robert Gray explained the real history in a recent paper in the journal Astrobiology. Enrico Fermi was the winner of the 1938 Nobel Prize for physics, led the team that developed the world’s first nuclear reactor at the University of Chicago, and was a key contributor to the Manhattan Project that developed the atomic bomb during World War II. The Los Alamos Lab where he worked was founded as the headquarters of that project.

Continue reading “Beyond “Fermi’s Paradox” I: A Lunchtime Conversation- Enrico Fermi and Extraterrestrial Intelligence”