Finally, An Explanation for the Alien Megastructure?

Ever since it was first announced in 2015, there has been speculation as to what could account for the dimming of KIC 8462852. Credit: SentientDevelopments.com

Back in October of 2015, astronomers shook the world when they reported how the Kepler mission had noticed a strange and sudden drop in brightness coming from KIC 8462852 (aka. Tabby’s Star). This was followed by additional studies that showed how the star appeared to be consistently dimming over time. All of this led to a flurry of speculation, with possibilities ranging from large asteroids and a debris disc to an alien megastructure.

But in what may be the greatest explanation yet, a team of researchers from Columbia University and the University of California, Berkley, have suggested that the star’s strange flickering could be the result of a planet it consumed at some point in the past. This would have resulted in a big outburst of brightness from which the star is now recovering; and the remains of this planet could be transiting in front of the star, thus causing periodic drops. Continue reading “Finally, An Explanation for the Alien Megastructure?”

What is the International Space Station?

The International Space Station orbiting Earth. Credit: NASA

After the historic Apollo Missions, which saw humans set foot on another celestial body for the first time in history, NASA and the Russian Space Agency (Roscosmos) began to shift their priorities away from pioneering space exploration and began to focus on developing long-term capabilities in space. In the ensuing decades (from the 1970s to 1990s), both agencies began to build and deploy space stations, each one bigger and more complex than the last.

The latest and greatest of these is the International Space Station (ISS), a scientific facility that resides in Low-Earth Orbit around our planet. This space station is the largest and most sophisticated orbiting research facility ever built and is so large that it can actually be seen with the naked eye. Central to its mission is the idea of fostering international cooperation for the sake of advancing science and space exploration.

Origin:

Planning for the ISS began in the 1980s and was based in part on the successes of Russia’s Mir space station, NASA’s Skylab, and the Space Shuttle Program. This station, it was hoped, would allow for the future utilization of  low-Earth Orbit and its resources, and serve as an intermediate base for renewed exploration efforts to the Moon, mission to Mars, and beyond.

The Mir space station hangs above the Earth in 1995 (photo taken by the mission crew of the Space Shuttle Atlantis, STS-71). Credit: NASA

In May of 1982, NASA established the Space Station task force, which was charged with creating a conceptual framework for such a space station. In the end, the ISS plan that emerged was a culmination of several different plans for a space station – which included NASA’s Freedom and the Soviet’s Mir-2 concepts, as well as Japan’s Kibo laboratory, and the European Space Agency’s Columbus laboratory.

The Freedom concept called for a modular space station to be deployed to orbit, where it would serve as the counterpart to the Soviet Salyut and Mir space stations. That same year, NASA approached the Japanese Aerospace and Exploration Agency (JAXA) to participate in the program with the creation of the Kibo, also known as the Japanese Experiment Module.

The Canadian Space Agency was similarly approached in 1982 and was asked to provide robotic support for the station. Thanks to the success of the Canadarm, which was an integral part of the Space Shuttle Program, the CSA agreed to develop robotic components that would assist with docking, perform maintenance, and assist astronauts with spacewalks.

In 1984, the ESA was invited to participate in the construction of the station with the creation of the Columbus laboratory – a research and experimental lab specializing in materials science. The construction of both the Kibo and Columbus modules was approved in 1985. As the most ambitious space program in either agency’s history, the development of these laboratories was seen as central to Europe and Japan’s emerging space capability.

Skylab, America’s First manned Space Station. Photo taken by departing Skylab 4 crew in Feb. 1974. Credit: NASA

In 1993, American Vice-President Al Gore and Russian Prime Minister Viktor Chernomyrdin announced that they would be pooling the resources intended to create Freedom and Mir-2. Instead of two separate space stations, the programs would be working collaboratively to create a single space station – which was later named the International Space Station.

Construction:

Construction of the ISS was made possible with the support of multiple federal space agencies, which included NASA, Roscosmos, JAXA, the CSA, and members of the ESA – specifically Belgium, Denmark, France, Spain, Italy, Germany, the Netherlands, Norway, Switzerland, and Sweden. The Brazilian Space Agency (AEB) also contributed to the construction effort.

The orbital construction of the space station began in 1998 after the participating nations signed the Space Station Intergovernmental Agreement (IGA), which established a legal framework that stressed cooperation based on international law. The participating space agencies also signed the Four Memoranda of Understandings (MoUs), which laid out their responsibilities in the design, development, and use of the station.

The assembly process began in 1998 with the deployment of the ‘Zarya’ (“Sunrise” in Russian) Control Module, or Functional Cargo Block. Built by the Russians with funding from the US, this module was designed to provide the station’s initial propulsion and power. The pressurized module – which weighed over 19,300 kg (42,600 pounds) – was launched aboard a Russian Proton rocket in November 1998.

On Dec. 4th, the second component – the ‘Unity’ Node – was placed into orbit by the Space Shuttle Endeavour (STS-88), along with two pressurized mating adapters. This node was one of three – Harmony and Tranquility being the other two – that would form the ISS’ main hull. On Sunday, Dec. 6th, it was mated to Zarya by the STS-88 crew inside the shuttle’s payload bay.

The next installments came in the year 2000, with the deployment of the Zvezda Service Module (the first habitation module) and multiple supply missions conducted by the Space Shuttle Atlantis.  The Space Shuttle Discovery (STS-92) also delivered the station’s third pressurized mating adapted and a Ku-band antenna in October. By the end of the month, the first Expedition crew was launched aboard a Soyuz rocket, which arrived on Nov. 2nd.

In 2001, the ‘Destiny’ Laboratory Module and the ‘Pirs’ Docking Compartment were delivered. The modular racks that are part of Destiny were also shipped using the Raffaello Multi-Purpose Logistic Modules (MPLM) aboard the Space Shuttle Endeavour and put into place using the Canadarm2 robotic arm. In 2002, additional racks, truss segments, solar arrays, and the Mobile Base System for the Station’s Mobile Servicing System were all delivered.

In 2007, the European Harmony module was installed, which allowed for the addition of the Columbus and Kibo laboratories – both of which were added in 2008. Between 2009 and 2011, construction was finalized with the addition of the Russian Mini-Research Module-1 and -2 (MRM1 and MRM2), the ‘Tranquility’ Node, the Cupola Observation Module, the Leonardo Permanent Multipurpose Module, and the Robonaut 2 technology suite.

The structure of the ISS (exploded in this diagram) showing the various components and how they are assembled together. Credit: NASA

No additional modules or components were added until 2016 when Bigelow Aerospace installed their experimental Bigelow Expandable Activity Module (BEAM). All told, it took 13 years to construct the space station, an estimated $100 billion and required more than 100 rocket and Space Shuttle launches, and 160 spacewalks.

As of the penning of this article, the station has been continuously occupied for a period of 16 years and 74 days since the arrival of Expedition 1 on November 2nd, 2000. This is the longest continuous human presence in low Earth orbit, having surpassed Mir’s record of 9 years and 357 days.

Purpose and Aims:

The main purpose of the ISS is fourfold: conducting scientific research, furthering space exploration, facilitating education and outreach, and fostering international cooperation. These goals are backed by NASA, the Russian Federal Space Agency (Roscomos), the Japanese Aerospace Exploration Agency (JAXA), the Canadian Space Agency (CSA), and the European Space Agency (ESA), with additional support from other nations and institutions.

As far as scientific research goes, the ISS provides a unique environment to conduct experiments under microgravity conditions. Whereas crewed spacecraft provide a limited platform that is only deployed to space for a limited amount of time, the ISS allows for long-term studies that can last for years (or even decades).

Many different and continuous projects are being conducted aboard the ISS, which are made possible with the support of a full-time crew of six astronauts, and a continuity of visiting vehicles (which also allows for resupply and crew rotations). Scientists on Earth have access to their data and are able to communicate with the science teams through a number of channels.

The many fields of research conducted aboard the ISS include astrobiology, astronomy, human research, life sciences, physical sciences, space weather, and meteorology. In the case of space weather and meteorology, the ISS is in a unique position to study these phenomena because of its position in LEO. Here, it has a short orbital period, allowing it to witness weather across the entire globe many times in a single day.

It is also exposed to things like cosmic rays, solar wind, charged subatomic particles, and other phenomena that characterize a space environment. Medical research aboard the ISS is largely focused on the long-term effects of microgravity on living organisms – particularly its effects on bone density, muscle degeneration, and organ function – which is intrinsic to long-range space exploration missions.

The ISS also conducts research that is beneficial to space exploration systems. Its location in LEO also allows for the testing of spacecraft systems that are required for long-range missions. It also provides an environment where astronauts can gain vital experience in terms of operations, maintenance, and repair services – which are similarly crucial for long-term missions (such as missions to the Moon and Mars).

The ISS also provides opportunities for education thanks to participation in experiments, where students are able to design experiments and watch as ISS crews carry them out. ISS astronauts are also able to engage classrooms through video links, radio communications, email, and educational videos/web episodes. Various space agencies also maintain educational materials for download based on ISS experiments and operations.

Educational and cultural outreach also fall within the ISS’ mandate. These activities are conducted with the help and support of the participating federal space agencies and are designed to encourage education and career training in the STEM (Science, Technical, Engineering, Math) fields.

One of the best-known examples of this is the educational videos created by Chris Hadfield – the Canadian astronaut who served as the commander of Expedition 35 aboard the ISS – which chronicled the everyday activities of ISS astronauts. He also directed a great deal of attention to ISS activities thanks to his musical collaboration with the Barenaked Ladies and Wexford Gleeks – titled “I.S.S. (Is Somebody Singing)” (shown above).

His video, a cover of David Bowie’s “Space Oddity”, also earned him widespread acclaim. Along with drawing additional attention to the ISS and its crew operations, it was also a major feat since it was the only music video ever to be filmed in space!

Operations Aboard the ISS:

As noted, the ISS is facilitated by rotating crews and regular launches that transport supplies, experiments, and equipment to the station. These take the form of both crewed and uncrewed vehicles, depending on the nature of the mission. Crews are generally transported aboard Russian Progress spacecraft, which are launched via Soyuz rockets from the Baikonur Cosmodrome in Kazakhstan.

Roscosmos has conducted a total of 60 trips to the ISS using Progress spacecraft, while 40 separate launches were conducted using Soyuz rockets. Some 35 flights were also made to the station using the now-retired NASA Space Shuttles, which transported crew, experiments, and supplies. The ESA and JAXA have both conducted 5 cargo transfer missions, using the Automated Transfer Vehicle (ATV) and the H-II Transfer Vehicle (HTV), respectively.

In more recent years, private aerospace companies like SpaceX and Orbital ATK have been contracted to provide resupply missions to the ISS, which they have done using their Dragon and Cygnus spacecraft. Additional spacecraft, such as SpaceX’s Crew Dragon spacecraft, are expected to provide crew transportation in the future.

Alongside the development of reusable first-stage rockets, these efforts are being carried out in part to restore domestic launch capability to the US. Since 2014, tensions between the Russian Federation and the US have led to growing concerns over the future of Russian-American cooperation with programs like the ISS.

Crew activities consist of conducting experiments and research considered vital to space exploration. These activities are scheduled from 06:00 to 21:30 hours UTC (Universal Coordinated Time), with breaks being taken for breakfast, lunch, dinner, and regular crew conferences. Every crew member has their own quarters (which includes a tethered sleeping bag), two of which are located in the Zvezda Module and four more installed in Harmony.

During “night hours”, the windows are covered to give the impression of darkness. This is essential since the station experiences 16 sunrises and sunsets a day. Two exercise periods of 1 hour each are scheduled every day to ensure that the risks of muscle atrophy and bone loss are minimized. The exercise equipment includes two treadmills, the Advanced Resistive Exercise Device (ARED) for simulated weight training, and a stationary bicycle.

Hygiene is maintained thanks to water jets and soap dispensed from tubes, as well as wet wipes, rinseless shampoo, and edible toothpaste. Sanitation is provided by two space toilets – both of Russian design – aboard the Zvezda and Tranquility Modules. Similar to what was available aboard the Space Shuttle, astronauts fasten themselves to the toilet seat and the removal of waste is accomplished with a vacuum suction hole.

Liquid waste is transferred to the Water Recovery System, where it is converted back into drinking water (yes, astronauts drink their own urine, after a fashion!). Solid waste is collected in individual bags that are stored in an aluminum container, which are then transferred to the docked spacecraft for disposal.

Food aboard the station consists mainly of freeze-dried meals in vacuum-sealed plastic bags. Canned goods are available, but are limited due to their weight (which makes them more expensive to transport). Fresh fruit and vegetables are brought during resupply missions, and a large array of spices and condiments are used to ensure that food is flavorful – which is important since one of the effects of microgravity is a diminished sense of taste.

To prevent spillage, drinks and soups are contained in packets and consumed with a straw. Solid food is eaten with a knife and fork, which are attached to a tray with magnets to prevent them from floating away, while drinks are provided in dehydrated powder form and then mixed with water. Any food or crumbs that floats away must be collected to prevent them from clogging the air filters and other equipment.

Hazards:

Life aboard the station also carries with it a high degree of risk. These come in the form of radiation, the long-term effects of microgravity on the human physique, the psychological effects of being in space (i.e. stress and sleep disturbances), and the danger of collision with space debris.

In terms of radiation, objects within the Low-Earth Orbit environment are partially protected from solar radiation and cosmic rays by the Earth’s magnetosphere. However, without the protection of the Earth’s atmosphere, astronauts are still exposed to about 1 millisievert a day, which is the equivalent of what a person on Earth is exposed to during the course of a year.

As a result, astronauts are at higher risk for developing cancer, suffering DNA and chromosomal damage, and diminished immune system function. Hence why protective shielding and drugs are a must aboard the station, as well as protocols for limiting exposure. For instance, during solar flare activity, crews are able to seek shelter in the more heavily shielded Russian Orbital Segment of the station.

As already noted, the effects of microgravity also take a toll on muscle tissues and bone density. According to a 2001 study conducted by NASA’s Human Research Program (HRP) – which researched the effects on an astronaut Scott Kelly’s body after he spent a year aboard the ISS – bone density loss occurs at a rate of over 1% per month.

Similarly, a report by the Johnson Space Center – titled “Muscle Atrophy” – stated that astronauts experience up to a 20% loss of muscle mass on spaceflights lasting just five to 11 days. In addition, more recent studies have indicated that the long-term effects of being in space also include diminished organ function, decreased metabolism, and reduced eyesight.

Because of this, astronauts exercise regularly in order to minimize muscle and bone loss, and their nutritional regimen is designed to make sure they the appropriate nutrients to maintain proper organ function. Beyond that, the long-term health effects, and additional strategies to combat them, are still being investigated.

But perhaps the greatest hazard comes in the form of orbiting junk – aka. space debris. At present, there are over 500,000 pieces of debris that are being tracked by NASA and other agencies as they orbit the Earth. An estimated 20,000 of these are larger than a softball, while the remainder are about the size of a pebble. All told, there are likely to be many millions of pieces of debris in orbit, but most are so small they can’t be tracked.

These objects can travel at speeds of up to 28,163 km/h (17,500 mph), while the ISS orbits the Earth at a speed of 27,600 km/h (17,200 mph). As a result, a collision with one of these objects could be catastrophic to the ISS. The station is naturally shielded to withstand impacts from tiny bits of debris and well as micro-meteoroids – and this shielding is divided between the Russian Orbital Segment and the US Orbital Segment.

On the USOS, the shielding consists of a thin aluminum sheet that is held apart from the hull. This sheet causes objects to shatter into a cloud, thereby dispersing the kinetic energy of the impact before it reaches the main hull. On the ROS, shielding takes the form of a carbon plastic honeycomb screen, an aluminum honeycomb screen, and glass cloth, all of which are spaced over the hull.

The ROS’ shielding is less likely to be punctured, hence why the crew moves to the ROS whenever a more serious threat presents itself. But when faced with the possibility of an impact from a larger object that is being tracked, the station performs what is known as a Debris Avoidance Manoeuvre (DAM). In this event, the thrusters on the Russian Orbital Segment fire in order to alter the station’s orbital altitude, thus avoiding the debris.

Future of the ISS:

Given its reliance on international cooperation, there have been concerns in recent years – in response to growing tensions between Russia, the United States, and NATO – about the future of the International Space Station. However, for the time being, operations aboard the station are secure, thanks to commitments made by all of the major partners.

In January of 2014, the Obama Administration announced that it would be extending funding for the US portion of the station until 2024. Roscosmos has endorsed this extension but has also voiced approval for a plan that would use elements of the Russian Orbital Segment to construct a new Russian space station.

Known as the Orbital Piloted Assembly and Experiment Complex (OPSEK), the proposed station would serve as an assembly platform for crewed spacecraft traveling to the Moon, Mars, and the outer Solar System. There have also been tentative announcements made by Russian officials about a possible collaborative effort to build a future replacement for the ISS. However, NASA has yet to confirm these plans.

In April of 2015, the Canadian government approved a budget that included funding to ensure the CSA’s participation with the ISS through 2024. In December of 2015, JAXA and NASA announced their plans for a new cooperative framework for the International Space Station (ISS), which included Japan extending its participation until 2024. As of December 2016, the ESA has also committed to extending its mission to 2024.

The ISS represents one of the greatest collaborative and international efforts in history, not to mention one of the greatest scientific undertakings. In addition to providing a location for crucial scientific experiments that cannot be conducted here on Earth, it is also conducting research that will help humanity make its next great leaps in space – i.e. mission to Mars and beyond!

On top of all that, it has been a source of inspiration for countless millions who dream of going to space someday! Who knows what great undertakings the ISS will allow for before it is finally decommissioned – most likely decades from now?

We have written many interesting articles about the ISS here at Universe Today. Here’s International Space Station Achieves 15 Years of Continuous Human Presence in Orbit, Beginner’s Guide to Seeing the International Space Station, Take a Virtual 3-D Spacewalk Outside the International Space Station, International Space Station Viewing, and Space Station Pictures.

For more information, check out the NASA Reference Guide to the ISS and this article about the 10th anniversary of the space station.

Astronomy Cast also has relevant episodes on the subject. Here’s Questions: An Unlocked Moon, Energy Into Black Holes, and the Space Station’s Orbit, and Episode 298: Space Stations, Part 3 – International Space Station.

Sources:

Venus Rules the Dusk Skies at Greatest Elongation

Venus at dusk
Venus, Mars, and the waxing crescent moon at dusk from the evening of January 3rd, 2017. Image credit and copyright: Alan Dyer.

Venus at dusk
Venus, Mars, and the waxing crescent Moon at dusk from the evening of January 3rd, 2017. Image credit and copyright: Alan Dyer.

“What’s that bright light in the sky?” The planet Venus never fails to impress, and indeed makes even seasoned observers look twice at its unexpected brilliance. The third brightest natural object in the sky, Venus now rules the dusk, a fine sight for wintertime evening commuters. Venus reaches greatest elongation tomorrow, a excellent time to admire this dazzling but shrouded world of mystery.

Venus at greatest elongation

Only the two planets interior to Earth’s orbit – Mercury and Venus – can reach a point known as greatest elongation from the Sun. As the name suggests, this is simply the point at which either planet appears to be at its maximum angular distance from the Sun. Think of a big right triangle in space, with Venus or Mercury at the right angle vertex, and the Sun and Earth at the other two corners. High school geometry can come in handy!

Venus elongation
Venus at greatest elongation (planets and orbits not to scale). Credit: Dave Dickinson

This Thursday on January 12th Venus reaches a maximum of 47 degrees elongation from the Sun at 11:00 Universal Time (UT) / 6:00 AM Eastern Standard Time, shining at magnitude -4.4. The maximum/minimum elongation for Venus that can occur is 47.3 to 45.4 degrees respectively, and this week’s is the widest until 2025.

Here’s some key dates to watch out for:

Jan 12th: Venus passes less than a degree from Neptune.

Jan 14th: Venus reaches theoretical dichotomy?

Jan 14th: Venus passes 3′ from +3.7 the magnitude star Lambda Aquarii.

Jan 17th: Venus crosses the ecliptic plane northward.

Venus and Mars reach ‘quasi-conjunction’ in late January.

January 30th: Venus crosses the celestial equator northward.

January 31st: The Moon passes 4 degrees south of Venus, and the two also form a nice equilateral triangle with Mars on the same date.

Looking west on the evening of January 31st, 2017. Image credit: Stellarium.

February 17th: Venus reaches a maximum brilliancy of magnitude -4.6.

March 26th: Solar conjunction for Venus occurs eight degrees north of the Sun … it is possible to spy Venus at solar conjunction from high northern latitudes, just be sure to block out the Sun.

Through the telescope, Venus displays a tiny 24.4” size half phase right around greatest elongation. You could stack 74 Venuses across the diameter of tomorrow’s Full Moon. When does Venus look to reach an exact half phase to you? This point, known as theoretical dichotomy, is often off by just a few days. This is a curious observed phenomenon, first noted by German amateur astronomer Johann Schröter in 1793. The effect now bears his name. A result of atmospheric refraction along the day/terminator on Venus, or an optical illusion?

Gibbous Venus
Almost there… a waning gibbous Venus from the evening of January 5th, 2017. Image credit and copyright: Shahrin Ahmad (@Shahgazer)

And hey, amateurs are now using ultraviolet filters to get actual detail on the cloud-tops of Venus… we like to use a variable polarizing filter to cut down the dazzling glare of Venus a bit at the eyepiece.

Also, keep an eye out for another strange phenomenon, known as the Ashen Light of Venus. Now,ashen light or Earthshine is readily apparent on dark side of the Moon, owing to the presence of a large sunlight reflector nearby, namely the Earth. Venus has no such large partner, though astronomers in the early age of telescopic astronomy claimed to have spied a moon of Venus, and even went as far as naming it Neith. An optical illusion? Or real evidence of Venusian sky glow on its nighttime side? After tomorrow, Venus will begin heading between the Earth and the Sun, becoming a slender crescent in the process. Solar conjunction occurs on March 25th, 2017. Venus sits just eight degrees north of the Sun on this date, and viewers in high Arctic latitudes might just be able to spy Venus above the horizon before sunrise on the day of solar conjunction. We performed a similar feat of visual athletics on the morning of January 16th, 1998 observing from North Pole, Alaska.

Venus as seen from Fairbanks, Alaska on the morning of solar conjunction, 2017. Image credit: Starry Night.

From there, Venus heads towards a fine dawn elongation on June 3rd, 2017. All of these events and more are detailed in our free e-book: 101 Astronomical Events for 2017.

Spying Venus in the Daytime

Did you know: you can actually see Venus in the daytime, if you know exactly where to look for it? A deep blue, high contrast sky is the key, and a nearby crescent Moon is handy in your daytime quest. Strange but true fact: Venus is actually brighter than the Moon per square arc second, with a shiny albedo of 70% versus the Moon’s paltry 12%. But Venus is tiny, and hard to spot against the blue daytime sky… until you catch sight of it.

The Moon passing Venus on January 31st, 2017 in the daytime sky. Image credit: Stellarium.

There’s another reason to brave the January cold for northern hemisphere residents: Venus can indeed cast a shadow if you look carefully for it. You’ll need to be away from any other light sources (including the Moon, which passes Full tomorrow as well with the first Full Moon of 2017, known as a Full Wolf Moon). And a high contrast surface such as freshly fallen snow can help… a short time exposure shot can even bring the shadow cast by Venus into focus.

If you follow Venus long enough, you’ll notice a pattern, as it visits very nearly the the same sky environs every eight years and traces out approximately the same path in the dawn and dusk sky. There’s a reason for this: 8 Earth years (8x 365.25 = 2922 days) very nearly equals 5 the synodic periods for Venus (2922/5=584 days, the number of days it takes Venus to return to roughly the same point with respect to the starry background, separate from its true orbit around the Sun of 225 days). For example, Venus last crossed the Pleiades star cluster in 2012, and will do so again in – you guessed it — in 2020. Unfortunately, this pattern isn’t precise, and Venus won’t also transit the Sun again in 2020 like it did in 2012. You’ll have to wait until one century from this year on December 10-11th, 2117 to see that celestial spectacle again….

Hopefully, we’ll have perfected that whole Futurama head-in-a-jar thing by then.

Confirmed: We Really are ‘Star Stuff’

An artists depiction of how the spectra of elements in the stars of the Milky Way reflect the importance these elements play in human life. Credit: Dana Berry/SkyWorks Digital Inc.; SDSS collaboration.

Scientist Carl Sagan said many times that “we are star stuff,” from the nitrogen in our DNA, the calcium in our teeth, and the iron in our blood.

It is well known that most of the essential elements of life are truly made in the stars. Called the “CHNOPS elements” – carbon, hydrogen, nitrogen, oxygen, phosphorous, and sulfur – these are the building blocks of all life on Earth. Astronomers have now measured of all of the CHNOPS elements in 150,000 stars across the Milky Way, the first time such a large number of stars have been analyzed for these elements.

“For the first time, we can now study the distribution of elements across our Galaxy,” says Sten Hasselquist of New Mexico State University. “The elements we measure include the atoms that make up 97% of the mass of the human body.”

Astronomers with the Sloan Digital Sky Survey made their observations with the APOGEE (Apache Point Observatory Galactic Evolution Experiment) spectrograph on the 2.5m Sloan Foundation Telescope at Apache Point Observatory in New Mexico. This instrument looks in the near-infrared to reveal signatures of different elements in the atmospheres of stars.

Quote from Carl Sage. Credit: Pinterest

While the observations were used to create a new catalog that is helping astronomers gain a new understanding of the history and structure of our galaxy, the findings also “demonstrates a clear human connection to the skies,” said the team.

While humans are 65% oxygen by mass, oxygen makes up less than 1% of the mass of all of elements in space. Stars are mostly hydrogen, but small amounts of heavier elements such as oxygen can be detected in the spectra of stars. With these new results, APOGEE has found more of these heavier elements in the inner part of the galaxy. Stars in the inner galaxy are also older, so this means more of the elements of life were synthesized earlier in the inner parts of the galaxy than in the outer parts.

So what does that mean for those of us out on the outer edges of one of the Milky Way’s spiral arms, about 25,000 light-years from the center of the galaxy?

“I think it’s hard to say what the specific implications are for when life could arise,” said team member Jon Holtzman, also from New Mexico State, in an email to Universe Today. “We measure typical abundance of CHNOPS elements at different locations, but it’s not so easy to determine at any given location the time history of the CHNOPS abundances, because it’s hard to measure ages of stars. On top of that, we don’t know what the minimum amount of CHNOPS would need to be for life to arise, especially since we don’t really know how that happens in any detail!”

Holtzman added it is likely that, if there is a minimum required abundance, that minimum was probably reached earlier in the inner parts of the Galaxy than where we are.

The team also said that while it’s fun to speculate how the composition of the inner Milky Way Galaxy might impact how life might arise, the SDSS scientists are much better at understanding the formation of stars in our Galaxy.

“These data will be useful to make progress on understanding Galactic evolution,” said team member Jon Bird of Vanderbilt University, “as more and more detailed simulations of the formation of our galaxy are being made, requiring more complex data for comparison.”

Sloan Foundation 2.5m Telescope at Apache Point Observatory. Credit: SDSS.

“It’s a great human interest story that we are now able to map the abundance of all of the major elements found in the human body across hundreds of thousands of stars in our Milky Way,” said Jennifer Johnson of The Ohio State University. “This allows us to place constraints on when and where in our galaxy life had the required elements to evolve, a sort ‘temporal Galactic habitable zone’”.

The catalog is available at the SDSS website, so take a look for yourself at the chemical abundances in our portion of the galaxy.

Source: SDSS

Could We Marsiform Ourselves?

Could We Marsiform Ourselves?
Could We Marsiform Ourselves?

As soon as people learn how inhospitable Mars, Venus, and really the entire Solar System are, they want to know how we can fix it. There’s a word for fixing a planet to make it more like Earth: terraforming.

If you want to fix Mars, all you have to do is thicken and warm up its atmosphere to the point that Earth life could survive. You’d need to do the opposite with Venus, cooling it down and reducing the atmospheric pressure.

But it’s hard to wrap your brain around the scale it would take to do such a thing. We’re talking about an incomprehensible amount of atmosphere to try and modify. The atmospheric pressure on the surface of Venus is 90 times the pressure of Earth. It’s carbon dioxide, so you need some chemical, like magnesium or calcium to lock it away. If you can mine, for example, 4 times the mass of asteroid Vesta, it should be possible.

Credit: NASA/Pat Rawlings

No, from our perspective, that’s practically impossible. In fact, it’s kind of ironic, when you consider the fact that we’re making our own planet less habitable to human civilization every day.

There’s another path to making another world habitable, however, and that’s changing life itself to be more adaptable to surviving on another world.

Instead of terraforming a planet, what if we terraformed ourselves?

Actually, that’s a really bad term. We’d really be changing ourselves to be better adapted to living on Mars. So we’d be Marsiforming ourselves? Venisfying ourselves? Okay, I’ll need to work on the terminology. But you get the gist.

Life, of course, has been evolving and adapting on Earth for at least 4.1 billion years. Pretty much as soon as life could arise on Earth, it did. And those early lifeforms went on to modify and change, adapting to every environment on our planet, from the deepest oceans, to the mountains. From the deserts to the icy tundra.

But in the last few thousand years, we’ve taken a driving role in the evolution of life for the domesticated plants and animals we eat and care for. Your pet dog looks vastly different from the wolf ancestor it evolved from. We’ve increased the yield of corn and wheat, adapted fruit and vegetables, and turned chickens into flightless mobile breast meat.

And in the last few decades, we’ve gained the most powerful new tools for adapting life to our needs: genetic modification. Instead of waiting for evolution and selective breeding to get the results we need, we can rewrite the genetic code of lifeforms, borrowing beneficial traits from life over here, and jamming it into the code of life over there. What doesn’t get cooler when it glows in the dark? Nothing, that’s what.

Can we adapt Earth life to live on Mars? It turns out, our toughest life isn’t that far off. During the American Society for Microbiology meeting in 2015, researchers presented how well tough bacteria would be able to handle the conditions on Mars. They found that 4 species of methanogens might actually be able to survive below the surface, consuming hydrogen and carbon dioxide and releasing methane.

It would still look like a desolate wasteland, but there would be life on Mars even if we have to put it there ourselves. Credit: NASA/JPL

In other words, under the right conditions, there are forms of Earth life that can survive on Mars right now. In fact, as we continue to explore Mars, and learn that it’s wetter than we ever thought, we risk infecting the planet with our own microbial life accidentally.

But when we imagine life on Mars, we’re not thinking about a few hardy methanogens, struggling for life beneath the briny regolith. No, we imagine plants, trees, and little animals scurrying about.

Do we have anything close there that we could adapt?

It turns out there are strains of lichen, the symbiosis of fungi and algae that could stand a chance. You’ve probably seen lichen on rocks and other places that suck for any other lifeform. But according to Jean-Pierre de Vera, with the German Aerospace Center’s Institute of Planetary Research in Berlin, Germany, there are Earth-based lichen which are tough enough.

They put lichen into a test environment that simulated the surface of Mars: low atmospheric pressure, carbon dioxide atmosphere, freezing cold temperatures and high radiation. The only things they couldn’t simulate were galactic radiation and low gravity.

What’s not to lichen about this plan? Credit: Roantrum (CC BY 2.0)

In the harshest conditions, the lichen was barely able to hang on and survive, but in milder Mars conditions, protected within rock cracks, the lichen continued to carry out its regular photosynthesis.

It seems that lichen too is ready to go to Mars.

Methanogens and hardy lichen don’t make for the most thrilling forest canopy. In a second, I’m going to talk about what we can do to tweak life to survive and thrive on Mars. But first, I’d like to thank Zach Kanzler, Jeremy Payne, James Craver, Mike Janzen, and the rest of our 709 patrons for their generous support. If you love what we’re doing and want to help out, head over to patreon.com/universetoday.

If our current life isn’t going to get the job done, well then we’re just going to need to adapt it ourselves. Just like we’ve done in the past, with breeding and more recently with rewriting the DNA itself.

Without dramatically changing the environment of Mars to thicken its atmosphere and boost its temperatures, it’s inconceivable to think that we’ll ever adapt anything more complex than bacteria or lichen to survive outside on Mars. But if those give us a toehold, and other techniques can improve the environment, it’s possible to take incremental steps in that direction.

Engineering concept of a plant growth module. Credit: NASA/Langley

Even within the protected environments of Martian colonies, our current plants and animals probably aren’t up to the task.

The regolith on Mars, for example, contains toxic perchlorates that would kill any Earth-based plants that would try to grow in it. There are Earth-based lifeforms that love perchlorates and it should be possible to create organisms that will strip this toxin out of the regolith and turn it into something useful, like rocket fuel.

Earth-based plants and animals evolved in a 24-hour daily cycle, but a day on Mars is 40 minutes longer than an Earth day. We could grow plants with artificial light, but if we want to use natural Martian light, some adaptation might be required.

Perhaps the biggest risk we face to living on Mars, the one that our technology really can’t help us with is the lower gravity. We don’t know if living in 38% gravity for generations is going to be good for us. We know we can run around on the surface for a few years, but can pregnancy carry to term in this lower gravity?

We just don’t know. In order to find out safely, we’ll need to create rotating space station colonies, where we vary the artificial gravity and see what happens with animals over multiple generations with lower gravity.

A NASA artist’s concept of a vehicle which could provide an artificial-gravity environment of Mars exploration crews. The piloted vehicle rotates around the axis that contains the solar panels. Levels of artificial gravity vary according to the tether length and the rate at which the vehicle spins. Credit: NASA

If there are health problems, we can take the results of these experiments, and modify genetic code to have better adaptation to this environment. And since humans are animals too, the lessons we learn will help us adapt ourselves to be better prepared to survive on Mars, forever.

Here’s a link to an awesome video from Kurzgesagt about the state of genetic engineering, and the amazing technology that’s just around the corner.

If we are able to change humans to live on Mars, we can probably do the same with other worlds. Image a far future, where human colonies on different worlds are adapted to survive there, using a mixture of technology and genetic manipulation. This will be good and bad. On the good side, human colonies will be able to survive over many generations. On the bad side, they might never be able to live anywhere else in the Solar System without going through the whole adaptation process again.

Would you be willing to change your body permanently to be better adapted to live on another world? Let me know your thoughts in the comments.

Messier 31 – Observing Andromeda (M31)

Messier 31 (the Andromeda Galaxy), along with Messier 32 and Messier 110. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the Andromeda Galaxy, also known as Messier 31. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is the famed Andromeda Galaxy, the closest spiral galaxy to the Milky Way which is named for the area of the sky it appears in (in the vicinity of the Andromeda constellation). It is the largest galaxy in the Local Group, and has the distinction of being one of the few objects that is actually getting closer to the Milky Way (and is expected to merge with us in a few billion years!).

Description:

Approaching us at roughly 300 kilometers per second, our massive galactic neighbor has been the object of studies of spiral structure, globular and open clusters, interstellar matter, planetary nebulae, supernova remnants, galactic nucleus, companion galaxies, and more for as long as we’ve been peering its way with a telescope. It’s part of our Local Group of galaxies and its two easily visible companions are only part of the eleven others that swarm around it.

One day, this galaxy will collide with our own, much as it is now consuming its neighbor – M32. However, this won’t come to pass for several billions years, so don’t go worrying about the immense gravitational disturbances just yet! And not surprisingly, a giant galaxy like Andromeda doesn’t get to be so big by keeping to itself. How many times now has the Great Andromeda Galaxy consumed another? More than once!

In 1993, the Hubble Space Telescope revealed that M31 has a double nucleus – a ‘leftover’ from another meal! As NASA and the ESA stated about the discovery at the time:

“Each of the two light-peaks contains a few million densely packed stars. The brighter object is the “classic” nucleus as studied from the ground. However, HST reveals that the true center of the galaxy is really the dimmer component. One possible explanation is that the brighter cluster is the leftover remnant of a galaxy cannibalized by M31. Another idea is that the true center of the galaxy has been divided in two by deep dust absorption across the middle, creating the illusion of two peaks. This green-light image was taken with HST’s Wide Field and Planetary Camera (WF/PC), in high resolution mode, on July 6, 1991. The two peaks are separated by 5 light-years. The Hubble image is 40 light-years across.”

Perhaps one of the most fascinating discovery recent years in Messier 31 was made by the orbiting Chandra X-Ray Observatory. The X-ray image below, made with the Chandra X-Ray Astronomy Center’s Advanced CCD Imaging Spectrometer (ACIS), shows the central portion of the Andromeda Galaxy. The Chandra X-ray Observatory is part of NASA’s fleet of “Great Observatories” along with the Hubble Space Telescope.

The Andromeda galaxy as seen in optical light, and Chandra’s X-ray vision of the changing supermassive black hole in Andromeda’s heart. Credit: X-Ray NASA/CXC/SAO/Li et al.), Optical (DSS)

The blue dot in the center of the image is a “cool” million degree X-ray source where Andromeda’s massive central object, with the mass of 30 million suns, is located, which many astronomers consider to be a supermassive black hole. Most of these are probably due to X-ray binary systems, in which a neutron star (or perhaps a stellar black hole) is in a close orbit around a normal star.”

Over the years our studies have advanced even more with the discovery of an eclipsing binary star in Messier 31. As Ignasi Ribas (et al) put it in a 2005:

“We present the first detailed spectroscopic and photometric analysis of an eclipsing binary in the Andromeda Galaxy (M31). This is a 19.3 mag semidetached system with late O and early B spectral type components. From the light and radial velocity curves we have carried out an accurate determination of the masses and radii of the components. Their effective temperatures have been estimated by modeling the absorption-line spectra. The analysis yields an essentially complete picture of the properties of the system, and hence an accurate distance determination to M31.”

In 2005, we discovered more. At that time, Scott Chapman of Caltech, Rodrigo Ibata of the Observatoire de Strasbourg, and their colleagues conducted detailed studies on the motions and metals of nearly 10,000 stars in Andromeda, which that the galaxy’s stellar halo is “metal-poor.” Essentially, this indicated that the stars lying in the outer bounds of the galaxy are lacking in elements heavier than hydrogen.

Image of the Andromeda Galaxy, showing Messier 32 to the lower left, which is currently merging with Andromeda. Credit: Wikipedia Commons/Torben Hansen

According to Chapman, this was surprising since one of the key differences thought to exist between Andromeda and the Milky Way was that the former’s stellar halo was metal-rich and the latter’s was metal-poor. If both galaxies are metal-poor, then they must have had very similar evolutions. As Chapman explained:

“Probably, both galaxies got started within a half billion years of the Big Bang, and over the next three to four billion years, both were building up in the same way by protogalactic fragments containing smaller groups of stars falling into the two dark-matter haloes.”

While no one yet knows what dark matter is made of, its existence is well established because of the mass that must exist in galaxies for their stars to orbit the galactic centers. In fact, current theories of galactic evolution assume that dark-matter wells acted as a sort of “seed” for today’s galaxies, with the dark matter pulling in smaller groups of stars as they passed nearby.

What’s more, galaxies like Andromeda and the Milky Way have each probably gobbled up about 200 smaller galaxies and protogalactic fragments over the last 12 billion years. Chapman and his colleagues arrived at the conclusion about the metal-poor Andromeda halo by obtaining careful measurements of the speed at which individual stars are coming directly toward or moving directly away from Earth.

The Andromeda Galaxy, viewed using conventional optics and IR. Credit: Kitt Peak National Observatory

This measure is called the radial velocity, and can be determined very accurately with the spectrographs of major instruments such as the 10-meter Keck-II telescope, which was used in the study. Of the approximately 10,000 Andromeda stars for which the researchers have obtained radial velocities, about 1,000 turned out to be stars in the giant stellar halo that extends outward by more than 500,000 light-years.

These stars, because of their lack of metals, are thought to have formed quite early, at a time when the massive dark-matter halo had captured its first protogalactic fragments. The stars that dominate closer to the center of the galaxy, by contrast, are those that formed and merged later, and contain heavier elements due to stellar evolution processes.In addition to being metal-poor, the stars of the halo follow random orbits and are not in rotation.

By contrast, the stars of Andromeda’s visible disk are rotating at speeds upwards of 200 kilometers per second.According to Ibata, the study could lead to new insights on the nature of dark matter. “This is the first time we’ve been able to obtain a panoramic view of the motions of stars in the halo of a galaxy,” says Ibata. “These stars allow us to weigh the dark matter, and determine how it decreases with distance.”

History of Observation:

Andromeda was known as the “Little Cloud” to Persian astronomer Abd-al-Rahman Al-Sufi, who described and depicted it in 964 AD in his Book of Fixed Stars. This wonderful galaxy was also cataloged by Giovanni Batista Hodierna in 1654, Edmund Halley in 1716, by Bullialdus 1664, and again by Charles Messier in 1764.

The Andromeda Galaxy is a spiral galaxy approximately 2.5 million light-years away in the constellation Andromeda. Credit: Wikipedia Commons/Adam Evans

Like most of the objects he added to the Messier Catalog, he mistook the galaxy initially for a nebulous object. As he wrote of the object in his notes:

“The sky has been very good in the night of August 3 to 4, 1764; and the constellation Andromeda was near the Meridian, I have examined with attention the beautiful nebula in the girdle of Andromeda, which was discovered in 1612 by Simon Marius, and which has been observed since with great care by different astronomers, and at last by M. le Gentil who has given a very ample and detailed description in the volume of the Memoirs of the Academy for 1759, page 453, with a drawing of its appearance. I will not report here what I have written in my Journal: I have employed different instruments for examining that nebula, and above all an excellent Gregorian telescope of 30 pouces focal length, the large mirror having 6 pouces in diameter, and magnifying 104 times these objects: the middle of that nebula appeared rather bright with this instrument, without any appearance of stars; the light went diminishing up to extinguishing; it resembles two cones or pyramids of light, opposed at their bases, of which the axis was in the direction form North-West to South-East; the two points of light or the two summits are about 40 minutes of arc apart; I say about, because of the difficulty to recognize these two extremities. The common base of the two pyramids is 15 minutes: these measures have been made with a Newtonian telescope of 4 feet and a half focal length, equipped with a micrometer of silk wires. With the same instrument I have compared the middle of the summits of the two cones of light with the star Gamma Andromedae of fourth magnitude which is very near to it, and little distant from its parallel. From these observations, I have concluded the right ascension of the middle of this nebula as 7d 26′ 32″, and its declination as 39d 9′ 32″ north. Since fifteen years during which I viewed and observed this nebula, I have not noticed any change in its appearances; having always perceived it in the same shape.”

A great many astronomers would observe the Andromeda Galaxy over the years, each colorfully describing it. However, as we know from history, it would be quite some time before its true nature as an external galaxy would be discovered. Here is where we must give the utmost respect to Sir William Herschel, who knew way ahead of everyone else, that there was something very, very different about Messier’s Object 31!

Composite Infrared/visble light image of the Andromeda Galaxy, taken by NASA’s Wide-field Infrared Survey Explorer (WISE). Credit: NASA/JPL-Caltech/WISE Team

Although he never publicly published his observing notes on another astronomer’s discoveries, it’s a shame he did not for this is what he had to say:

“.. But when an object is of such a construction, or at such a distance from us, that the highest power of penetration, which hitherto has been applied to it, leaves it undetermined whether it belongs to the class of nebulae or of stars, it may be called ambiguous. As there is, however, a considerable difference in the ambiguity of such objects, I have arranged 71 of them into the following four collections. The first contains seven objects that may be supposed to consist of stars, but where the observations hitherto made, of either their appearance or form, leave it undecided into which class they should be placed. Connoiss. 31 [M31] is: A large nucleus with very extensive nebulous branches, but the nucleus is very gradually joined to them. The stars which are scattered over it appear to be behind it, and seem to lose part of their lustre in the passage of their light through the nebulosity; there are not more of them scattered over the immediate neighborhood. I examined it in the meridian with a mirror of 24 inches in diameter, and saw it in high perfection; but its nature remains mysterious. Its light, instead of appearing resolvable with this aperture, seemed to be more milky. The objects in this collection must at present remain ambiguous.”

Locating Messier 31:

Even under moderately light polluted skies the Great Andromeda Galaxy, located in the Andromeda constellation, can be easily be found with the unaided eye – if you know where to look. Seasoned amateur astronomers can literally point to the sky and show you the location of M31, but perhaps you have never tried to find it. Believe it or not, this is an easy galaxy to spot even under the moonlight.

Simply identify the large diamond-shaped pattern of stars that is the Great Square of Pegasus. The northernmost star is Alpha, and it is here we will begin our hop. Stay with the northern chain of stars and look four finger widths away from Alpha for an easily seen star. The next along the chain is about three more finger widths away. Two more finger widths to the north and you will see a dimmer star that looks like it has something smudgy nearby.

The location of Messier 31, in the Andromeda constellation (from which it takes its name). Credit: IAU/Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Point your binoculars there, because that’s no cloud – it’s the Andromeda Galaxy! Now aim your binoculars or small telescope its way… Perhaps one of the most outstanding of all galaxies to the novice observer, M31 spans so much sky that it takes up several fields of view in a larger telescope, and even contains its own clusters and nebulae with New General Catalog designations.

If you have a slightly larger telescope, you may also be able to pick up M31’s two companions – M32 and M110. Even with no scope or binoculars, it’s pretty amazing that we can see something – anything! – that is over two million light-years away!

Enjoy this wonderful and mysterious galaxy at any and every opportunity! Even the most modest of optical aids will reveal it for what it is… Another island universe!

And here are ye’ ole’ quick facts. Enjoy!

Object Name: Messier 31
Alternative Designations: M31, NGC 224, Andromeda Galaxy
Object Type: Type Sb Galaxy
Constellation: Andromeda
Right Ascension: 00 : 42.7 (h:m)
Declination: +41 : 16 (deg:m)
Distance: 2900 (kly)
Visual Brightness: 3.4 (mag)
Apparent Dimension: 178×63 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Exploding Binary Stars Will Light Up the Sky in 2022

Artist’s impression of the VFTS 352 star system, the hottest and most massive double star system to date where the two components are in contact and sharing material. Credit: ESO/L. Calçada

Stellar collisions are an amazingly rare thing. According to our best estimates, such events only occur in our galaxy (within globular clusters) once every 10,000 years. It’s only been recently, thanks to ongoing improvements in instrumentation and technology, that astronomers have been able to observe such mergers taking place. As of yet, no one has ever witnessed this phenomena in action – but that may be about to change!

According to study from a team of researchers from Calvin College in Grand Rapids, Michigan, a binary star system that will likely merge and explode in 2022. This is an historic find, since it will allow astronomers to witness a stellar merger and explosion for the first time in history. What’s more, they claim, this explosion will be visible with the naked-eye to observers here on Earth.

The findings were presented last week at the 229th Meeting of the American Astronomical Society (AAS). In a presentation titled “A Precise Prediction of a Stellar Merger and Red Nova Outburst“, Professor Lawrence Molnar and his team shared findings that indicate how this binary pair will merge in about six years time. This event, they claim, will cause an outburst of light so bright that it will become the brightest object in the night sky.

Professor Lawrence Molnar of the Calvin College’s Dept. of Physics and Astronomy. He predicts KIC 9832227 will collide and explode in 2022. Credit: calvin.edu

This binary star system, which is known as KIC 9832227, is one that Prof. Molnar and his colleagues – which includes students from the Apache Point Observatory and the University of Wyoming – have been monitoring since 2013. His interest in the star was piqued during a conference in 2013 when Karen Kinemuchi (an astronomers with the Apache Point Observatory) presented findings about brightness changes in the star.

This led to questions about the nature of this star system – specifically, whether it was a pulsar or a binary pair. After conducting their own observations using the Calvin observatory, Prof. Molnar and his colleagues concluded that the star was a  contact binary – a class of binary star where the two stars are close enough to share an atmosphere. This brought to mind similar research in the past about another binary star system known as V1309 Scorpii.

This binary pair also had a shared atmosphere; and over time, their orbital period kept decreasing until (in 2008) they unexpectedly collided and exploded. Believing that KIC 9832227 would undergo a similar fate, they began conducting tests to see if the star system was exhibiting the same behavior. The first step was to make spectroscopic observations to see if their observations could be explained by the presence of a companion star.

As Cara Alexander, a Calvin College student and one of the co-authors on the team’s research paper, explained in a college press release:

“We had to rule out the possibility of a third star. That would have been a pedestrian, boring explanation. I was processing data from two telescopes and obtained images that showed a signature of our star and no sign of a third star. Then we knew we were looking at the right thing. It took most of the summer to analyze the data, but it was so exciting. To be a part of this research, I don’t know any other place where I would get an opportunity like that; Calvin is an amazing place.”

Diagram showing the summer constellations of Cygnus and Lyra and the position of KIC 9832227 (shown with a red circle). Credit: calvin.edu

The next step was to measure the pair’s orbital period, to see it was in fact getting shorter over time – which would indicate that the stars were moving closer to each other. By 2015, Prof. Molnar and his team determined that the stars would eventually collide, resulting in a kind of stellar explosion known as a “Red Nova”. Initially, they estimated this would take place between 2018 and 2020, but have since placed the date at 2022.

In addition, they predict that the burst of light it will cause will be bright enough to be seen from Earth. The star will be visible as part of the constellation Cygnus, and it appear as an addition star in the familiar Northern Cross star pattern (see above). This is an historic case, since no astronomer has ever been able to accurately predict when and where a stellar collision would take place in the past.

What’s more, this discovery is immensely significant because it represents a break with the traditional discovery process. Not only have small research institutions and universities not been the ones to take the lead on these sorts of discoveries in the past, but student-and-teacher teams have also not been the ones who got to make them. As Molnar explained it:

“Most big scientific projects are done in enormous groups with thousands of people and billions of dollars. This project is just the opposite. It’s been done using a small telescope, with one professor and a few students looking for something that is not likely. Nobody has ever predicted a nova explosion before. Why pay someone to do something that almost certainly won’t succeed? It’s a high-risk proposal. But at Calvin it’s only my risk, and I can use my work on interesting, open-ended questions to bring extra excitement into my classroom. Some projects still have an advantage when you don’t have as much time or money.”

The model Prof. Molnar and his team constructed of the double star system KIC 9832227, which is a contact binary (i.e. two stars that are touching). Credit: calvin.edu.

Over the course of the next year, Molnar and his colleagues will be monitoring KIC 9832227 carefully, and in multiple wavelengths. This will be done with the help of the NROA’s Very Large Array (VLA), NASA’s Infrared Telescope Facility at Mauna Kea, and the ESA’s XMM-Newton spacecraft. These observatories will study the star’s radio, infrared and X-ray emissions, respectively.

Molnar also expects that amateur astronomers will be able to monitor the pair’s orbital timing and variations in brightness. And if he and his team’s predictions are correct, every student and stargazer in the northern hemisphere – not to mention people who just happen to be out for a walk – will be privy to the amazing light show. This is sure to be a once-in-a-lifetime event, so stay tuned for more information!

Interestingly enough, this historic discovery is also the subject of a documentary film. Titled “Luminous“, the documentary – which is directed by Sam Smartt, a Calvin professor of communication arts and sciences – chronicles the process that led Prof. Molnar and his team to make this unprecedented discovery. The documentary will also include footage of the Red Nova as it happens in 2022, and is expected to be released sometime in 2023.

Check out the trailer below:

Further Reading: Calvin College, Science Mag

Poor Weather Pushes SpaceX Return Debut with Revolutionary Iridium Relay Sats to Jan. 14

Mission patch for Iridium-1 mission showing launch of the first 10 Iridium NEXT voice and data relay satellites on SpaceX Falcon 9 from Vandenberg Air Force Base, California, for Iridium Communications, and planned landing of the first stage on a droneship in the Pacific Ocean. Credit: SpaceX/Iridium

Mission patch for Iridium-1 mission showing launch of the first 10 Iridium NEXT voice and data relay satellites on SpaceX Falcon 9 from Vandenberg Air Force Base, California, for Iridium Communications, and planned landing of the first stage on a droneship in the Pacific Ocean. Credit: SpaceX/Iridium

In the face of unrelenting days of very poor weather and a range conflict with another very critical rocket launch, SpaceX is pushing back the return debut of their private Falcon 9 rocket carrying a revolutionary fleet of voice and data commercial communications relay satellites for Iridium to no earlier than next weekend, Jan 14.

Earlier indications of a nearly weeks long launch delay from Monday, Jan. 9 to next Saturday morning, Jan. 14, were officially confirmed today, Jan. 8, by SpaceX and their Iridium Communications customer.

“Launch moving due to high winds and rains at Vandenberg,” SpaceX announced today, Jan. 8.

Liftoff of the SpaceX Falcon 9 with the payload of 10 identical next generation Iridium NEXT communications satellites had been slated for 10:22 am PST (1:22 pm EST), Jan. 9, 2017 from Space Launch Complex 4E on Vandenberg Air Force Base in California.

The advanced next satellites will start the process of replacing an aging Iridium fleet in orbit for nearly two decades.

And it was less than 48 hours ago on Friday, Jan. 6, that the FAA finally granted SpaceX a license to launch the ‘Return to Flight’ Falcon 9 mission – as I confirmed with the FAA here.

“The FAA accepted the investigation report on the AMOS-6 mishap and has closed the investigation,” FAA spokesman Hank Price confirmed to Universe Today.

“SpaceX applied for a license to launch the Iridium NEXT satellites from Vandenberg Air Force Base. The FAA has granted a license for that purpose.”

The SpaceX investigation report into the total loss of the Falcon 9 rocket and AMOS-6 payload has not been released at this time. The FAA has oversight responsibility to encourage, facilitate, and promote U.S. commercial space transportation and ensure the protection of public safety.

The private rocket – developed by CEO Elon Musk and his company – has been grounded for four months since a catastrophic launch pad explosion last September suddenly destroyed another Falcon 9 and its $200 million Israeli owned satellite during a prelaunch fueling test on the Florida Space Coast.

The Sept. 1, 2016 calamity was the second Falcon 9 failure within 15 months time. Both occurred inside the second stage and called into question the rockets reliability.

The prognosis of a week of bad California weather had been known for some time and finally prompted an official announcement just 24 hours before the hoped for launch.

“With high winds and rain in the forecast at Vandenberg Air Force Base, the first launch of 10 Iridium NEXT satellites is now planned for January 14th at 9:54:34 am PST with a back-up date of January 15th,” Iridium officials elaborated in a statement.

The mission, known as Iridium 1, has an instantaneous launch opportunity at 9:54:34 a.m. PST (12:54:34 p.m. EST).

Next Sunday, Jan. 15 is available as a back-up launch opportunity in case of a delay for any reason including technical and weather related issues.

Furthermore, humorous pleas by Iridium CEO Matt Desch for divine intervention went unheeded !

“Can now confirm: new launch date Jan 14 at 9:54am pst. Bad weather the cause. Anti-rain dances didn’t work – oh well. Cal needs rain?” said Iridium CEO Matt Desch when he threw in the towel this morning by tweet.

Things change fast and furious in the rocket business, and flexibility is the name of the game if you want to survive the frequently changing landscape.

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium

A contributing factor to the delay is a range conflict with an upcoming Atlas rocket launch for the U.S National Reconnaissance Organization (NRO) at Vandenberg AFB.

“Other range conflicts this week results in next available launch date being Jan 14,” SpaceX confirmed.

The United Launch Alliance Atlas V is scheduled to launch the super secret NROL-79 spy satellite for the NRO on Jan. 26.

Prior to the launch, ULA must conduct a wet dress rehearsal (WDR) of the Atlas V by fueling it with propellants to confirm its readiness to launch.

The clandestine NROL-79 intelligence-gathering payload is critical to US national defense. Surly it was manufactured over a time span of several years at an unknown classified cost probably amounting to billions of dollars.

For the Iridium – 1 mission the 229-foot (70-meter) Falcon 9 will carry a fleet of ten Iridium NEXT mobile voice and data relay satellites to orbit from Vandenberg Air Force Base, Ca, for Iridium Communications.

Video Caption: Iridium NEXT: Changing the Paradigm In Space Communications. Credit: Iridium/SpaceX

Iridium 1 is the first of seven planned Falcon 9 launches to establish the Iridium NEXT constellation which will eventually consist of 81 advanced satellites.

The FAA license approved on Jan. 6 covers all seven launches.

“Space Explorations Technologies is authorized to conduct seven launches of Falcon 9 version 1.2 vehicles from Space Launch Complex 4E at Vandenberg Air Force Base with each flight transporting ten Iridium NEXT payloads to low Earth orbit.

The license also allows SpaceX to land the first stage on a droneship at sea in the Pacific Ocean.

SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 arrives at mouth of Port Canaveral, FL on June 2, 2016. Credit: Ken Kremer/kenkremer.com

So besides the launch, SpaceX plans to continue its secondary objective of recovering the Falcon 9 first stage via a propulsive soft landing – as done several times previously and witnessed by this author.

The Iridium-1 mission patch featured herein highlights both the launch and landing objectives.

The goal is to eventually recycle and reuse the first stage – and thereby dramatically slash launch costs per Musk’s vision.

This Falcon 9 has been outfitted with four landing lags and grid fins for a controlled landing on a tiny barge prepositioned in the Pacific Ocean several hundred miles off the west coast of California.

Desch says that all seven of his Falcon’s will be new – not reused.

“All our seven F9s are new,” Desch tweeted.

On Jan. 2, SpaceX issued a statement ascribing the Sept. 1, 2016 AMOS-6 launch pad anomaly as being traced to a failure wherein one of three high pressure helium storage tanks located inside the second stage liquid oxygen (LOX) tank of the Falcon 9 rocket suddenly burst. Cold helium is used to pressurize the propellant tanks. They provided some but not many technical details.

The failure apparently originated at a point where the helium tank “buckles” and accumulates oxygen – “leading to ignition” of the highly flammable superchilled oxygen propellant in the second stage when it came into contact with carbon fibers covering the helium tanks – also known as composite overwrapped pressure vessels (COPVs).

“Friction ignition” between the carbon fibers acting as a friction source and super chilled oxygen led to the calamitous explosion, SpaceX concluded was the most likely cause of the disaster.

Watch this space for continuing updates as SpaceX rolls the rocket out from the processing hangar and we watch the saga of the foggy weather forecast with great anticipation !

SpaceX rocket processing hangar at Vandenberg Air Force Base in California, fogged by common fog. Credit Julian Leek

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

FAA Accepts Accident Report, Grants SpaceX License for Falcon 9 ‘Return to Flight’

SpaceX Falcon 9 poised for launch from Vandenberg Air Force Base in California, in this file photo ahead of Jason-3 launch for NASA on Jan. 17, 2016. Credit: SpaceX

SpaceX Falcon 9 poised for launch from Vandenberg Air Force Base in California, in this file photo ahead of Jason-3 launch for NASA on Jan. 17, 2016. Credit: SpaceX

The Federal Aviation Administration (FAA) today “accepted the investigation report” regarding the results of SpaceX’s investigation into the cause of the company’s catastrophic Sept. 1, 2016 launch pad explosion of a Falcon 9 rocket in Florida, and simultaneously “granted a license” for the ‘Return to Flight’ blastoff of the private rocket from California as soon as next week – the FAA confirmed today to Universe Today, Friday, Jan. 6.

“The FAA accepted the investigation report on the AMOS-6 mishap and has closed the investigation,” FAA spokesman Hank Price confirmed to Universe Today.

All SpaceX launches were immediately grounded when their Falcon 9 booster and its $200 million AMOS-6 Israeli communications satellite payload were suddenly destroyed without warning during a routine preflight fueling test on Sept. 1, 2016, at pad 40 on Cape Canaveral Air Force Station in Florida.

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

With today’s definitive action from the FAA the path is now clear for Hawthorne, Ca based SpaceX to resume launches of the Falcon 9 rocket as soon as Monday, Jan. 9. It will carry a fleet of ten Iridium NEXT mobile voice and data relay satellites to orbit from Vandenberg Air Force Base, Ca, for Iridium Communications.

“SpaceX applied for a license to launch the Iridium NEXT satellites from Vandenberg Air Force Base. The FAA has granted a license for that purpose,” Price added.

The SpaceX investigation report has not been released at this time.

Liftoff of the SpaceX Falcon 9 with the payload of 10 identical next generation IridiumNEXT communications satellites is slated for 10:22 am PST (1:22 pm EST), Jan. 9, 2017 from Space Launch Complex 4E on Vandenberg Air Force Base in California.

Furthermore all technical systems would appear to be ‘GO’ for the commercial rocket and commercial payload, following the official announcement by SpaceX CEO Elon Musk that the Falcon 9 rocket successfully passed its normally routine prelaunch static fire test of the first stage engines, on Thursday, Jan. 5.

“Hold-down firing of @SpaceX Falcon 9 at Vandenberg Air Force completed,” SpaceX CEO Elon Musk tweeted Jan. 5.

“All systems are go for launch next week.”

“Payload/rocket mating underway,” Iridium CEO Matt Desch elaborated and confirmed via twitter today.

The static fire test involves briefly firing the first stage Merlin 1D engines for several seconds while the rocket remains anchored to the launch pad. The test is run to confirm that all the engines and rocket systems are technically ready for launch.

In contrast to AMOS-6, the Iridium NEXT payload was not installed atop the rocket this time during Thursday’s test to keep them safely and prudently stored out of harms way – just in case another unexpected mishap were to occur.

Members of the Iridium Communications team were on hand to observe Thursday’s static fire test first hand.

“With great anticipation, team members observed the static fire test of the Falcon 9 rocket that will deliver the first ten Iridium NEXT satellites to orbit. Iridium is excited to share that the test is complete, and that SpaceX is reporting that the rocket should be ready for the first launch of the Iridium NEXT satellite constellation next week,” said Iridium officials.

“The target launch date is now Monday, January 9th at 10:22 am PST, weather permitting.”

And since the launch window is instantaneous, there is no margin for error or delay from either a technical or weather standpoint.

Currently, next weeks weather outlook is not promising with a forecast of rain and clouds on Monday morning and beyond. But only time will tell.

“With completion of the static fire test, our first launch has just gotten that much closer,” said Matt Desch, chief executive officer at Iridium, in a statement.

“The Iridium team has been anxiously awaiting launch day, and we’re now all the more excited to send those first ten Iridium NEXT satellites into orbit.”

“Looks like we’re good to go for Monday!” Desch tweeted today.

“Payload/rocket mating underway; we’ll just have to see about the weather. Anti-rain dances, anyone?”

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium

Also known as Iridium 1, this is the first of seven planned Falcon 9 launches to establish the Iridium NEXT constellation – eventually consisting of 81 advanced satellites.

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium

Indeed the FAA license approved today covers all seven launches.

“Space Explorations Technologies is authorized to conduct seven launches of Falcon 9 version 1.2 vehicles from Space Launch Complex 4E at Vandenberg Air Force Base with each flight transporting ten Iridium NEXT payloads to low Earth orbit.

The license also allows SpaceX to land the first stage on a droneship at sea in the Pacific Ocean.

After the Sept. 1 accident at pad 40, SpaceX initiated a joint investigation to determine the root cause with the FAA, NASA, the US Air Force and industry experts who have been “working methodically through an extensive fault tree to investigate all plausible causes.”

On Jan. 2, SpaceX issued a statement ascribing the Sept. 1 anomaly as being traced to a failure wherein one of three high pressure gaseous helium storage tanks located inside the second stage liquid oxygen (LOX) tank of the Falcon 9 rocket suddenly burst. Helium is used to pressurize the propellant tanks. They provided some but not many technical details.

The failure apparently originated at a point where the helium tank “buckles” and accumulates oxygen – “leading to ignition” of the highly flammable liquid oxygen propellant in the second stage when it came into contact with carbon fibers covering the helium tank.

The helium tanks – also known as composite overwrapped pressure vessels (COPVs) – are used in both stages of the Falcon 9 to store cold helium which is used to maintain tank pressure.

SpaceX says investigators identified “an accumulation of super chilled liquid oxygen LOX or SOX in buckles under the overwrap” as “credible causes for the COPV failure.”

Apparently the super chilled LOX or SOX can pool in the buckles and react with carbon fibers in the overwrap – which act as an ignition source. “Friction ignition” between the carbon fibers and super chilled oxygen led to the calamitous explosion.

The Sept. 1 calamity was the second Falcon 9 failure within 15 months time and both occurred inside the second stage.

Up close look at a SpaceX Falcon 9 second stage and payload fairing from the JCSAT-16 launch from pad 40 at Cape Canaveral Air Force Station, FL. Both Falcon 9 rocket failures took place inside the second stage. Credit: Ken Kremer/kenkremer.com

If the Iridium liftoff is successful, SpaceX hopes to resume launches on the Florida Space Coast soon thereafter involving both commercial and NASA payloads using pad 39A at the Kennedy Space Center.

SpaceX could launch an EchoStar communications satellite later in January and a cargo resupply mission for NASA to the ISS in February from KSC.

Blastoff of SpaceX Falcon 9 on Dragon CRS-9 resupply mission to the International Space Station (ISS) at 12:45 a.m. EDT on July 18, 2016. Credit: Ken Kremer/kenkremer.com

Watch this space for continuing updates as SpaceX rolls the rocket out from the processing hangar and we watch the foggy weather forecast with great anticipation !

SpaceX rocket processing hangar at Vandenberg Air Force Base in California, fogged by common fog. Credit Julian Leek

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of commercial and human rated Falcon 9 rockets as well as the Falcon Heavy, as seen here during Dec 2016 with construction of a dedicated new transporter/erector. Credit: Ken Kremer/kenkremer.com

SpaceX Falcon 9 erected at Vandenberg AFB launch pad in California in advance of Jason-3 launch for NASA on Jan. 17, 2016. Credit: SpaceX

Hubble Spots Possible Exocomets in Nearby Star System

Artist's impression of comets plunging into the star HD 172555, which was observed using the Hubble Space Telescope. Credit: hubblesite.org

The Hubble Space Telescope is a workhorse which, despite its advanced years, keeps on producing valuable scientific data. In addition to determining the rate at which the Universe is expanding, spotting very distant galaxies, and probing the early history of the Universe, it has also observed some truly interesting things happening in nearby star systems.

For example, Hubble recently spotted some unusual activity in HD 172555, a star system located about 95 light-years from Earth. Here, Hubble obtained spectral information that indicated the presence of comets that appeared to be falling into the star. This could prove useful to scientists who are looking to understand how comets behaved during the early history of the Solar System.

These findings were presented at the 229th Meeting of the American Astronomical Society (AAS), which has been taking place this past week in Grapevine, Texas. During the course of the presentation, Dr. Carol Grady of Eureka Scientific Inc. and NASA’s Goddard Space Flight Center, shared Hubble data that hinted at the presence of infalling comets, a finding which could bolster theories about what is known as “gravitational stirring”.

Artist’s concept of a collision that is believed to have taken place in the HD 172555 star system between a moon-sized object and a Mercury-sized planet. Credit: NASA/JPL-Caltech

Basically, this theory states that the presence of a Jupiter-size planet in a star system will lead to comets being deflected by its massive gravity, thus sending them into the star. This phenomena is associated with younger stars, and is believed to have taken place in our own Solar System billions of years ago – which also led to number of comets being diverted towards Earth.

The detection of infalling comets in this system (and the way it bolsters the theory of gravitational stirring) is of imminence significant, since it is believed that it was this very mechanism that transported water to Earth when it was quite young. By observing how comets behave around young stars like HD 172555, which is estimated to be around 40 million years old, astronomers are able to see just how this mechanism could work.

As Carol Grady explained in a Hubble press release:

“Seeing these sun-grazing comets in our solar system and in three extrasolar systems means that this activity may be common in young star systems. This activity at its peak represents a star’s active teenage years. Watching these events gives us insight into what probably went on in the early days of our solar system, when comets were pelting the inner solar system bodies, including Earth. In fact, these star-grazing comets may make life possible, because they carry water and other life-forming elements, such as carbon, to terrestrial planets.”

And while exocomets are far too small to be observed directly, the research team – which included members from the European Space Agency, the Kapteyn Institute, NASA Goddard Space Flight Center, and the University of Colorado – were able to discern their presence in 2015 using data obtained by Hubble’s Space Telescope Imaging Spectrograph (STIS) and the Cosmic Origins Spectrograph (COS).

Artist’s concept of circumstellar disk of debris, which the HD 172555 star system is known to have. Credit: NASA

Over the course of six days of observation, Hubble’s instruments detected silicon and carbon gas in the ultraviolet wavelength. The source of these gases also appeared to be moving at a speed of over 579,360 km (360,000 mph) across the face of the star. The only viable explanation for this was that they were spotting trails of gas as they evaporated from comets as they made their way across the system’s debris disk and closer to the star.

This is not the first time that exocomets have been seen transiting HD 172555. In 2004 and 2011, similar detections were made by the European Southern Observatory’s High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph. On those occasions, HARPS detected spectra that indicated the presence of calcium, which was seen as evidence that comet-like objects were falling into the star.

Dr. Grady and her team followed up on this by conducting their own spectral analysis of the system. By viewing HD 172555 and its debris disk in ultraviolet light, they were able to discern the presence of silicon and carbon. This was made easier thanks to the fact that HD 172555’s debris disk is viewed close to edge-on, which gives the telescope a clear view of any comet activity taking place within it.

Dr. Grady admits that there are still some uncertainties with their study. For instance, it is not entirely clear whether the objects they observed were comets or asteroids. Though the behavior is consistent with comets, more data on their particular compositions will be needed before they can be sure.

But in the meantime, it is compelling evidence for how comets behaved during the early history of the Solar System. And it may lend weight to the debate about how water originated on Earth, which is also central to determining how and where life may emerge in other parts of the Universe.

Further Reading: Hubble Space Telescope