Rosetta Images Show Comet’s Changing Surface Close Up

Rosetta mission poster showing the deployment of the Philae lander to comet 67P/Churyumov-Gerasimenko.. Credit: ESA/ATG medialab (Rosetta/Philae); ESA/Rosetta/NavCam (comet)

The Rosetta spacecraft learned a great deal during the two years that it spent monitoring Comet 67P/Churyumov-Gerasimenko – from August 6th, 2014 to September 30th, 2016. As the first spacecraft to orbit the nucleus of a comet, Rosetta was the first space probe to directly image the surface of a comet, and observed some fascinating things in the process.

For instance, the probe was able to document some remarkable changes that took place during the mission with its OSIRIS camera. According to a study published today (March. 21st) in Science, these included growing fractures, collapsing cliffs, rolling boulders and moving material on the comet’s surface that buried some features and exhumed others.

These changes were noticed by comparing images from before and after the comet reached perihelion on August 13th, 2015 – the closets point in its orbit around the Sun. Like all comets, it is during this point in 67P/Churyumov-Gerasimenko’s orbit that the surface experiences its highest levels of activity, since perihelion results in greater levels of surface heating, as well as increased tidal stresses.

Images taken by Rosetta’s OSIRIS camera show changes in the surface between 2015 and 2016. Credit: ESA/Rosetta/NAVCAM (top center images); ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA (all others)

Basically, as comets gets closer to the Sun, they experience a combination of in-situ weathering and erosion, sublimation of water-ice, and mechanical stresses arising from an increased spin rate. These processes can be either unique and transient, or they can place over longer periods of time.

As Ramy El-Maarry, a scientist from the Max-Planck Institute for Solar System Research and the lead author of the study, said in an ESA press statement:

“Monitoring the comet continuously as it traversed the inner Solar System gave us an unprecedented insight not only into how comets change when they travel close to the Sun, but also how fast these changes take place.”

For instance, in-situ weathering occurs all over the comet and is the result of heating and cooling cycles that happen on both a daily and a seasonal basis. In the case of 67P/Churyumov-Gerasimenko’s (6.44 Earth years), temperatures range from 180 K (-93 °C; -135 °F) to 230 K (-43 °C; -45 °F) during the course of its orbit. When the comet’s volatile ices warm, they cause consolidated material to weaken, which can cause fragmentation.

Combined with the heating of subsurface ices – which leads to outgassing – this process can result in the sudden collapse of cliff walls. As other photographic evidence that was recently released by the Rosetta science team can attest, this sort of process appears to have taken place in several locations across the comet’s surface.

Images showing a new fracture and boulder movement in Anuket. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/ID

Similarly, comets experience increased stress because their spin rates speed up as they gets closer to the Sun. This is believed to be what caused the 500 meter-long (1640 ft) fracture that has been observed in the Anuket region. Originally discovered in August of 2014, this fracture appeared to have grown by 30 meters (~100 ft) when it was observed again in December of 2014.

This same process is believed to be responsible for a new fracture that was identified from OSIRIS images taken in June 2016. This 150-300 meter-long (492 – 984 ft) fracture appears to have formed parallel to the original. In addition, photographs taken in February of 2015 and June of 2016 (shown above) revealed how a 4 meter-wide (13 ft) boulder that was sitting close to the fractures appeared to have moved by about 15 meters (49 ft).

Whether or not the two phenomena are related is unclear. But it is clear that something very similar appears to have taken place in the Khonsu region. In this section of the comet (which corresponds to one of its larger lobes), images taken between May of 2015 and June 2016 (shown below) revealed how a much larger boulder appeared to have moved even farther between the two time periods.

Images showing a moving boulder in the Khonsu region. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

This boulder – which measures some 30 meters (98 ft) across and weighs an estimated 12,800 metric tonnes (~14,100 US tons) – moved a distance of about 140 meters (~460 ft). In this case, outgassing during perihelion is believed to be the culprit. On the one hand, it could have caused the surface material to erode beneath it (thus causing it to roll downslope) or by forcibly pushing it.

For some time, it has been known that comets undergo changes during the course of their orbits. Thanks to the Rosetta mission, scientists have been able to see these processes in action for the first time. Much like all space probes, vital information continues to be discovered long after the Rosetta mission officially came to an end. Who knows what else the probe managed to witness during its historic mission, and which we will be privy to?

Further Reading: ESA

Large Hadron Collider Discovers 5 New Gluelike Particles

A typical LHCb event fully reconstructed. Particles identified as pions, kaon, etc. are shown in different colours. Credit: LHCb collaboration

Since it began its second operational run in 2015, the Large Hadron Collider has been doing some pretty interesting things. For example, starting in 2016, researchers at CERN began using the collide to conduct the Large Hadron Collider beauty experiment (LHCb). This is investigation seeks to determine what it is that took place after the Big Bang so that matter was able to survive and create the Universe that we know today.

In the past few months, the experiment has yielded some impressive results, such as the measurement of a very rare form of particle decay and evidence of a new manifestation of matter-antimatter asymmetry. And most recently, the researchers behind LHCb have announced the discovery of a new system of five particles, all of which were observed in a single analysis.

According to the research paper, which appeared in arXiv on March 14th, 2017, the particles that were detected were excited states of what is known as a “Omega-c-zero” baryon. Like other particles of its kind, the Omega-c-zero is made up of three quarks – two of which are “strange” while the third is a “charm” quark. The existence of this baryon was confirmed in 1994. Since then, researchers at CERN have sought to determine if there were heavier versions.

The LHCb collaboration team. Credit: lhcb-public.web.cern.ch

And now, thanks to the LHCb experiment, it appears that they have found them. The key was to examine the trajectories and the energy left in the detector by particles in their final configuration and trace them back to their original state. Basically, Omega-c-zero particles decay via the strong force into another type of baryon (Xi-c-plus) and then via the weak force into protons, kaons, and pions.

From this, the researchers were able to determine that what they were seeing were Omega-c-zero particles at different energy states (i.e. of different sizes and masses). Expressed in megaelectronvolts (MeV), these particles have masses of 3000, 3050, 3066, 3090 and 3119 MeV, respectively. This discovery was rather unique, since it involved the detection of five higher energy states of a particle at the same time.

This was made possible thanks to the specialized capabilities of the LHCb detector and the large dataset that was accumulated from the first and second runs of the LHC – which ran from 2009 to 2013, and since 2015, respectively. Armed with the right equipment and experience, the researchers were able to identify the particles with an overwhelming level of certainty, ruling out the possibility that it was a statistical fluke in the data.

The discovery is also expected to shed light on some of the deeper mysteries of subatomic particles, like how the three constituent quarks are bound inside a baryon by the “strong force” – i.e. the fundamental force that is responsible for holding the insides of atoms together. Another mystery that this could help resolve in the correlation between different quark states.

The Large Hadron Collider is the world’s largest and most powerful particle accelerator Credit: CERN

As Dr Greig Cowan – a researcher from the University of Edinburgh who works on the LHCb experiment at Cern’s LHC – explained in an interview with the BBC:

“This is a striking discovery that will shed light on how quarks bind together. It may have implications not only to better understand protons and neutrons, but also more exotic multi-quark states, such as pentaquarks and tetraquarks.

The next step will be to determine the quantum numbers of these new particles (the numbers used to identify the properties of a specific particle) as well as determining their theoretical significance. Since it came online, the LHC has been helping to confirm the Standard Model of particle physics, as well as reaching beyond it to explore the greater unknowns of how the Universe came to be, and how the fundamental forces that govern it fit together.

In the end, the discovery of these five new particles could be a crucial step along the road towards a Theory of Everything (ToE), or just another piece in the very big puzzle that is our existence. Stay tuned to see which!

Further Reading: CERN, LHCb, arXiv

Stephen Hawking Is Going To The Edge Of Space

The VMS Eve (Virgin Mother Ship) carrys VSS Unity (Virgin Spaceship) for its first flight ever over Mojave, CA on Thursday September 8, 2016. Image: Virgin Galactic

Stephen Hawking has spent decades theorizing about the Universe. His thinking on black holes, quantum gravity, quantum mechanics, and a long list of other topics, has helped shape our understanding of the cosmos. Now it looks like the man who has spent most of his adult life bound to a wheel-chair will travel to the edge of space.

In an interview with Good Morning Britain, Hawking said “Richard Branson has offered me a seat on Virgin Galactic, and I said yes immediately.” Hawking added that his “three children have brought me great joy—and I can tell you what will make me happy, to travel in space.”

Stephen Hawking is one of the premier physicists and theorists of our time. Here he is being presented by his daughter Lucy Hawking at the lecture he gave for NASA’s 50th anniversary. Credit: NASA/Paul Alers

It’s all thanks to Richard Branson and his VSS Unity spaceship, which is still under development by The Spaceship Company. The Unity is designed to launch not from a rocket pad, but from underneath a carrier aircraft. By eliminating enormously expensive rocket launches from the whole endeavour, Branson hopes to make space more accessible to more people.

Virgin Spaceship Unity (VSS Unity) glides for the first time after being released from Virgin Mothership Eve (VMS Eve) over the Mojave Desert on 3rd, December 2016. Image: Virgin Galactic

The Virgin Galactic spacecraft is carried to an altitude of about 50,000 feet, then released from its carrier aircraft. Its rocket fires for about 1 minute, which accelerates the craft to three-and-a-half times the speed of sound, then is shut off. Then, according to Virgin Galactic, passengers will experience a “dramatic transition to silence and to true weightlessness.”

As the video shows, the spacecraft is still in glide testing phase, where it is carried to altitude, then released. There is no rocket burn, and the craft glides down and lands at its base.

This spaceflight won’t be Hawking’s first experience with weightlessness, however. To celebrate his 65th birthday, Hawking travelled on board Zero Gravity Corp’s modified Boeing 727 in 2007. At the time, that zero-g flight was in preparation for a trip into sub-orbital space with Virgin Galactic in 2009. But the development of Virgin Galactic’s spacecraft has suffered setbacks, and the 2009 date was not attainable.

Hawking has experienced zero gravity before, when he flew on Zero Gravity Corp’s modified Boeing 727 in 2007. Image: By Jim Campbell/Aero-News Network – http://www.flickr.com/photos/39735679@N00/475109138/ / http://mediaarchive.ksc.nasa.gov/detail.cfm?mediaid=31873, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3655144

Virgin Galactic’s stated aim is to “democratize space,” albeit at a cost of US $250,000 per person. But somehow I doubt that Hawking will be paying. If anyone has earned a free trip into space, it is Dr. Stephen Hawking.

Eye Opening Numbers On Space Debris

Still image taken from a movie, Space debris ? a journey to Earth, to be released April 18th, 2017. Credit: ESA

Orbital debris, otherwise known as “space junk”, is a major concern. This massive cloud that orbits the Earth is the result of the many satellites, platforms and spent launchers that have been sent into space over the years. And as time went on, collisions between these objects (as well as disintegrations and erosion) has created even more in the way of debris.

Aside from threatening satellites and posing a danger to long-term orbital missions – like the International Space Station – this situation could pose serious problems for future space launches. And based on the latest numbers released by the Space Debris Office at the European Space Operations Center (ESOC), the problem has been getting getting worse. Continue reading “Eye Opening Numbers On Space Debris”

SpaceX Dragon Splashes Down in Pacific with Treasure Trove of Space Station Science

The SpaceX Dragon CRS-10 spacecraft is pictured seconds before splashing down in the Pacific Ocean on Mar. 19, 2017 after departing the International Space Station (ISS). Credit: SpaceX
The SpaceX Dragon CRS-10 spacecraft is pictured seconds before splashing down in the Pacific Ocean on Mar. 19, 2017 after departing the International Space Station (ISS). Credit: SpaceX

KENNEDY SPACE CENTER, FL – SpaceX’s tenth contracted resupply mission to the International Space Station came to a safe conclusion with a splashdown of the Dragon spacecraft in the Pacific Ocean Sunday and successfully returned a treasure trove of more than two tons of precious science experiments and research samples from the space station.

Researchers on Earth are eagerly awaiting the science data and samples in order to carry out high powered laboratory analysis that will eventually yield the fruits of the hard won labor – years in the making.

The Dragon CRS-10 cargo freighter departed the International Space Station (ISS) Sunday morning after Expedition 50 astronauts Thomas Pesquet of ESA (European Space Agency) and Shane Kimbrough of NASA released the spacecraft from the grip of the station’s 57.7-foot-long(17.6-meter) Canadian-built Canadarm2 robotic arm as planned at 5:11 a.m. EDT, March 19.

After carefully maneuvering away from the orbiting outpost and six person international crew at an altitude of appox. 250 miles (400 km), Dragon eased away to a safe distance.

SpaceX’s Dragon CRS-10 cargo vehicle is attached to the International Space Station on Feb 23, 2017 after early morning capture by astronauts Shane Kimbrough and Thomas Pesquet using the robotic arm and subsequent berthing at Earth facing port on the Harmony module. It will stay for a month. Credit: NASA

The vessel then fired its braking thrusters a few hours later to initiate the reentry burn that would set the craft on course for a fiery plummet through the Earth’s atmosphere.

Some five and a half hours later the spaceship carried out a parachute assisted splashdown in the Pacific Ocean at 10:46 a.m. EDT, about 200 miles southwest of Long Beach, California.

The highest priority research and technology cargo will be removed from Dragon immediately and returned to NASA.

SpaceX CRS-10 Dragon supply ship launched on Feb. 19, 2017 from NASA’s Kennedy Space Center in Florida successfully arrives at the International Space Station on Feb. 23, 2017 for capture and berthing at station port on the Harmony module. Credit: NASA

The rest will travel back to port and be prepared for a return trip to SpaceX’s test facility in McGregor, Texas, where the remaining scientific samples, research experiments and technology gear and hardware will be unloaded for NASA.

Dragon had spent nearly a month berthed at the Earth-facing port on the station’s Harmony module, since arriving on Feb 23.

Dragon begun its space voyage after it was launched from the Kennedy Space Center (KSC) on Sunday, Feb. 19 on the first Falcon 9 rocket ever to blast off from historic launch pad 39A in a blaze of glory – as I reported here.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

At liftoff, the Dragon CRS-10 space freighter was carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload to the low Earth orbiting station in support of the Expedition 50 and 51 crew members.

After a four day chase, Dragon was captured and attached to the station using the Canadian arm on Feb 23 by the same two astronauts who released it on Sunday.

The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere. It is one of NASA’s longest running earth science programs.

The LIS lightning mapper will measure the amount, rate and energy of lightning as it strikes around the world from the altitude of the ISS as it orbits Earth. Its data will complement that from the recently orbited GLM lighting mapper lofted to geosynchronous aboard the NASA/NOAA GOES-R spacecraft instrument.

NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.

SAGE III and RAVEN were stowed in the Dragon’s unpressurized truck. Astronauts plucked them out of the trunk using the robotic arm and attached them to specified locations on the stations exterior to carry out their objectives.

For the return trip to Earth, the astronaut crew loaded Dragon with more than 5,400 pounds of NASA cargo, and science and technology demonstration samples gathered and collected by the stations crewmembers.

“A variety of technological and biological studies are returning in Dragon. The Microgravity Expanded Stem Cells investigation had crew members observe cell growth and other characteristics in microgravity,” said NASA.

“This information will provide insight into how human cancers start and spread, which aids in the development of prevention and treatment plans. Results from this investigation could lead to the treatment of disease and injury in space, as well as provide a way to improve stem cell production for human therapy on Earth.”

“Samples from the Tissue Regeneration-Bone Defect study, a U.S. National Laboratory investigation sponsored by the Center for the Advancement of Science in Space (CASIS) and the U.S. Army Medical Research and Materiel Command, studied what prevents vertebrates such as rodents and humans from re-growing lost bone and tissue, and how microgravity conditions affect the process. Results will provide a new understanding of the biological reasons behind a human’s inability to grow a lost limb at the wound site, and could lead to new treatment options for the more than 30 percent of the patient population who do not respond to current options for chronic non-healing wounds.”

Dragon departed in order to make way for the arrival of the next cargo ship.

The ‘SS John Glenn’ Cygnus cargo freighter built by Orbital Sciences is due to lift off no earlier than March 27 on a United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral Air Force Station.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s onsite launch and mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

What is Uranus Named After?

Uranus as seen by NASA's Voyager 2. Credit: NASA/JPL

The period known as the Scientific Revolution (ca. 16th to the 18th century) was a time of major scientific upheaval. In addition to advances made in mathematics, chemistry, and the natural sciences, several major discoveries were made in the field of astronomy. Because of this, our understanding of the size and structure of the Solar System was forever revolutionized.

Consider the discovery of Uranus. While this planet had been viewed on many occasions by astronomers in the past, it was only with the birth of modern astronomy that its true nature came to be understood. And with William Herschel‘s discovery in the 18th century, the planet would come to be officially named and added to the list of known Solar Planets.

Past Observations:

The first recorded instance of Uranus being spotted in the night sky is believed to date back to the 2nd century BCE. At this time, Hipparchos – the Greek astronomer, mathematician and founder of trigonometry – apparently recorded the planet as a star in his star catalogue (completed in 129 BCE).

Large floor mosaic from a Roman villa in Sassoferrato, Italy (ca. 200–250 CE). Aion (Uranus), the god of eternity, stands above Tellus (Gaia) and her four children (the seasons). Credit: Wikipedia Commons/Bibi Saint-Poi

This catalog was later incorporated into Ptolemy’s Almagest, which became the definitive source for Islamic astronomers and for scholars in Medieval Europe for over one-thousand years. During the 17th and 18th centuries, multiple recorded sightings were made by astronomers who catalogued it as being a star.

This included English astronomer John Flamsteed, who in 1690 observed the star on six occasions and catalogued it as a star in the Taurus constellation (34 Tauri). During the mid-18th century, French astronomer Pierre Lemonnier made twelve recorded sightings, and also recorded it as being a star. It was not until March 13th, 1781, when William Herschel observed it from his garden house in Bath, that Uranus’ true nature began to be revealed.

Discovery:

Herschel’s first report on the object was recorded on April 26th, 1781. Initially, he described it as being a “Nebulous star or perhaps a comet”, but later settled on it being a comet since it appeared to have changed its position in the sky. When he presented his discovery to the Royal Society, he maintained this theory, but also likened it to a planet.

Replica of Herschel’s Seven-foot Reflecting Telescope, located at the Herschel Museum of Astronomy. Credit: herschelmuseum.org.uk

As was recorded in the Journal of the Royal Society and Royal Astronomical Society on the occasion of his presentation:

“The power I had on when I first saw the comet was 227. From experience I know that the diameters of the fixed stars are not proportionally magnified with higher powers, as planets are; therefore I now put the powers at 460 and 932, and found that the diameter of the comet increased in proportion to the power, as it ought to be, on the supposition of its not being a fixed star, while the diameters of the stars to which I compared it were not increased in the same ratio. Moreover, the comet being magnified much beyond what its light would admit of, appeared hazy and ill-defined with these great powers, while the stars preserved that lustre and distinctness which from many thousand observations I knew they would retain. The sequel has shown that my surmises were well-founded, this proving to be the Comet we have lately observed.”

While Herschel would continue to maintain that what he observed was a comet, his “discovery” stimulated debate in the astronomical community about what Uranus was. In time, astronomers like Johann Elert Bode would conclude that it was a planet, based on its nearly-circular orbit. By 1783, Herschel himself acknowledged that it was a planet to the Royal Society.

Name and Meaning:

As he lived in England, Herschel originally wanted to name Uranus after his patron, King George III. Specifically, he wanted to call it Georgium Sidus (Latin for “George’s Star”), or the Georgian Planet. Although this was a popular name in Britain, the international astronomy community didn’t think much of it, and wanted to follow the historical precedent of naming the planets after ancient Greek and Roman gods.

These two pictures of Uranus — one in true color (left) and the other in false color — were compiled from images returned Jan. 17, 1986, by the narrow-angle camera of Voyager 2. Credit: NASA/JPL

Consistent with this, Bode proposed the name Uranus in a 1782 treatise. The Latin form of Ouranos, Uranus was the grandfather of Zeus (Jupiter in the Roman pantheon), the father of Cronos (Saturn), and the king of the Titans in Greek mythology. As it was discovered beyond the orbits of Jupiter and Saturn, the name seemed highly appropriate. As he would later write in his 1784 book, “From the Newly Discovered Planet“:

“Already in the pre-read at the local Natural History Society on 12th March 1782 treatise, I have the father’s name from Saturn, namely Uranus, or as it is usually with the Latin suffix, proposed Uranus, and have since had the pleasure that various astronomers and mathematicians, cited in their writings or letters to me approving this designation. In my view, it is necessary to follow the mythology in this election, which had been borrowed from the ancient name of the other planets; because in the series of previously known, perceived by a strange person or event of modern times name of a planet would very noticeable. Diodorus of Cilicia tells the story of Atlas, an ancient people that inhabited one of the most fertile areas in Africa, and looked at the sea shores of his country as the homeland of the gods. Uranus was her first king, founder of their civilized life and inventor of many useful arts. At the same time he is also described as a diligent and skilful astronomers of antiquity … even more: Uranus was the father of Saturn and the Atlas, as the former is the father of Jupiter.”

There were some holdouts to this new name, largely in Britain, where the name Georgium Sidus remained popular. Nevertheless, Herschel’s proposal would become universally accepted by 1850. Uranus was the only planet in the Solar System named after a god from Greek mythology, rather than using the Roman counterpart’s name. 

Other Names:

While Uranus remains the widely-recognized name for the Solar System’s seventh planet (and third gas giant), other cultures have recognized it by various other names. For example in traditional Chinese astronomy, it is known as Tianwángxing, which means literally “Sky King Star”.

Uranus. Image credit: Hubble
Uranus, as imaged by the Hubble Space Telescope. Credit: NASA/Hubble

The same name is recognized in the Korean, Japanese and Vietnamese astronomical traditions. To the Aztecs (and other Nahuatl-speaking peoples), Uranus was known as “Ilhuicateocitlalli” – named after the word for “sky” (“ilhuicatl”) – and also as “Xiuhteuccitlalli”, the Aztec god of fire, day, and heat. Many other cultures recognized Uranus in their mythological traditions and assigned various names.

The discovery of Uranus was one of several that would follow from the 18th century onward. In time, Neptune, the Asteroid Belt, Ceres, Vesta, Pluto and the Kuiper Belt would be added to the mix, thus creating a model of the Solar System that would endure until the early 21st century – when new bodies were discovered beyond the orbit that Neptune that would lead to the nomenclature debate.

We have written many interesting articles on Uranus here at Universe Today. Here’s The Planet Uranus, Ten Interesting Facts About Uranus, Why is Uranus on its Side?, Tilt of Saturn, and Who Discovered Uranus?

For more information, here’s an article from the Hubble educational site about the discovery of Uranus, and here’s NASA’s Solar System Exploration page on Uranus.

We have recorded an episode of Astronomy Cast just about Uranus. You can access it here: Episode 62: Uranus.

Sources:

Ever Wondered What Final Approach To Mars Might Feel Like?

Layered deposits in Uzboi Vallis on Mars, as seen by the HiRISE camera on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona.

We’ve posted several ‘flyover’ videos of Mars that use data from spacecraft. But this video might be the most spectacular and realistic. Created by filmmaker Jan Fröjdman from Finland, “A Fictive Flight Above Real Mars” uses actual data from the venerable HiRISE camera on board the Mars Reconnaissance Orbiter, and takes you on a 3-D tour over steep cliffs, high buttes, amazing craters, polygons and other remarkable land forms. But Fröjdman also adds a few features reminiscent of the landing videos taken by the Apollo astronauts. Complete with crosshatches and thruster firings, this video puts you on final approach to land on (and then take off from) Mars’ surface.

(Hit ‘fullscreen’ for the best viewing)

To create the video, Fröjdman used 3-D anaglyph images from HiRISE (High Resolution Science Imaging Experiment), which contain information about the topography of Mars surface and then processed the images into panning video clips.

Fröjdman told Universe Today he worked on this video for about three months.

“The most time consuming was to manually pick the more than 33,000 reference points in the anaglyph images,” he said via email. “Now when I count how many steps there were in total in the process, I come to seven and I needed at least 6 different kinds of software.”

A new impact crater that was formed between July 2010 and May 2012, as seen by the HiRISE camera on the Mars Reconnaissance Orbiter. This image is part of “A Fictive Flight Above Real Mars” by Jan Fröjdman. Credit: NASA/JPL/University of Arizona.

Fröjdman, a landscape photographer and audiovisual expert, said he wanted to create a video that gives you the feeling “that you are flying above Mars looking down watching interesting locations on the planet,” he wrote on Vimeo. “And there are really great places on Mars! I would love to see images taken by a landscape photographer on Mars, especially from the polar regions. But I’m afraid I won’t see that kind of images during my lifetime.”

Between HiRISE and the Curiosity rover images, we have the next best thing to a human on Mars. But maybe one day…

Fröjdman has previously posted other space-related videos, including video and images of the Transit of Venus in 2012 he took from an airplane, and a lunar eclipse in 2011.

A FICTIVE FLIGHT ABOVE REAL MARS from Jan Fröjdman on Vimeo.

Catch Comet 41P Tuttle-Giacobini-Kresák At Its Best

Comet 41P glows green (left) and shows its true coma and just the hint of a stubby tail in the negative (red) image (right) from March 19th. Image credit and copyright: Hisayoshi Kato
Comet 41P Tuttle-Giacobini-Kresák glows green (left) and shows its true coma and just the hint of a stubby tail in the negative (red) image (right) from March 19th. Image credit and copyright: Hisayoshi Kato

Miss out on comet 45P Honda-Mrkos-Pajdušáková? Is Comet 2P Encke too low in the dawn sky for your current latitude? Well, the Universe is providing us northerners with another shot at a fine binocular comet, as 41P Tuttle-Giacobini-Kresák glides through Ursa Major this week.

As seen from 30 degrees north, Comet 41P Tuttle-Giacobini-Kresák (sometimes called “Comet 41P” or “Comet TGK”) starts the last week of March about 40 degrees above the NE horizon at 9PM local. It then makes the plunge below 30 degrees elevation on April 1st for the same latitude at the same time. At its closest on April 5th, the comet will be moving at two degrees a day (the width of four Full Moons!) as seen from the Earth as it slides down through the snaky constellation of Draco.

The path of Comet 41P from March 20th through April 20th. Credit: Starry Night.

The comet reaches an elevation of 10 degrees for evening viewers around April 15th, and passes 10 degrees north of another up and coming binocular comet C/2015 V2 Johnson right around the same date. After early April, your odds get better to see Comet 41P Tuttle-Giacobini-Kresák high in the sky at its upper culmination past local midnight towards dawn.

There’s another reason to try and recover this comet this week, as the Moon is now a waning crescent headed towards New on March 28th. From there, the waxing Moon begins to interfere with cometary observations as it heads towards the Easter Full Moon on April 11th, pushing efforts to recover and follow the comet towards pre-dawn hours.

First discovered by astronomer Horace Tuttle 1858, the comet was independently recovered by Michel Giacobini in 1907 and L’ubor Kresák in 1951 and its periodic nature was uncovered.

Note: We believe that the “May 3rd, 1858” date given for the discovery of this comet around ye ole Web is in fact, erroneous, as both Stellarium and Starry Night put the comet just a few degrees from the Sun on this date! Perhaps both programs are wrong looking that far back in time… but they’re both exactly wrong. Perhaps a bit of astronomical detective work is in order? More to come!

Due for a revision? Here’s the position of Comet 41P Tuttle-Giacobini-Kresák on the oft quoted discovery date of May 3rd, 1858… just 8 degrees from the Sun! Credit: Stellarium.

Orbiting the Sun once every 5.4 years, this is the 29th perihelion return of the comet since its discovery in 1858. The comet’s orbit takes it from 5.1 AU, out to near the orbit of Jupiter, to a perihelion just 0.13 AU outside the orbit of the Earth. This year’s passage is nearly as close as the comet can approach the Earth, with solar opposition also occurring on April 5th. The comet’s orbit is inclined about nine degrees to the ecliptic plane. Think of the comet zipping down over the northern hemisphere of the Earth, reaching perihelion as it heads from north to south, then headed back out over the southern hemisphere.

Currently at +9th magnitude, the comet should flirt with naked eye visibility of magnitude +6 in early April. This comet is also worth watching, as it’s known for periodic outbursts. Flashback to 1973, and Comet 41P Tuttle-Giacobini-Kresák made an easy naked eye apparition of +4. This is also the closest approach of Comet 41P Tuttle-Giacobini-Kresák near the Earth in our lifetimes, and the closest in the two century span from 1900 to 2100.

The projected light curve for Comet 41P Tuttle-Giacobini-Kresák. The pink line denotes perihelion, at the black dots mark recorded magnitude estimates. Adapted from Seiichi Yoshida’s Weekly Information About Bright Comets.

Arecibo did ping 41P Tuttle-Giacobini-Kresák in early March, but probably won’t image the comet near perihelion due to its northerly declination (Arecibo is only partially steerable). They did, however nab a great animation of the twin lobbed Comet 45P Honda-Mrkos-Pajdušáková on February 12th:

An amazing view: Comet 45P Honda-Mrkos-Pajušáková pinged by Arecibo radar last month. Credit: Arecibo/USRA

That makes two, bi-bulbous comets, if you include Comet 67P Churyumov-Gerasimenko. Are twin-lobbed comets in fact as common as comet-hunters with umlauts in their name?

Here are some key highlight events for Comet 41P Tuttle-Giacobini-Kresák to watch out for. Close passes are less than one degree unless otherwise noted:

March 21st: Photo-op: passes between M108 and M97 the Owl Nebula
March 29th: passes into Draco
April 2nd: Passes near the 3.6 magnitude star Thuban (Alpha Draconis)
April 5th: Passes just 0.15 AU (23.2 million kilometers) from the Earth at 13:30 UT.
April 7th: passes just 22 degrees from the north celestial pole at declination 68 degrees north.
April 11th: reaches perihelion at 1.05 AU (162.7 million kilometers) from the Sun.
April 18th: passes the 2.7 magnitude star Rastaban (Beta Draconis)
April 20th: passes into the constellation Hercules

The comet vs two Messier objects: the view on March 22nd at 12:00 UT. Credit: Starry Night

Observing comets is an exercise in patience, as that quoted magnitude is often smeared out over an extended area. Dark skies and a good star chart are key. I like to use binoculars when hunting for comets brighter than +10th magnitude, as it gives you a true (un-inverted both up/down and left to right) view, coupled with a generous field of view.

Comet 41P Tuttle-Giacobini-Kresák from March 15th. Image credit and copyright: Wendy Clark.

If Comet 41P Tuttle-Giacobini-Kresák outperforms into the +6th magnitude range or brighter, it could become a fine target to image with foreground objects. We’re already seeing some amazing images streaming in, with more to come as perihelion approaches.

Other binocular comets to watch for in 2017 include C/2015 ER61 PanSTARRS (May) and C/2015 V2 Johnson (June).

If Comet 41P Tuttle-Giacobini-Kresák performs at or above expectations (and if no great “comet(s) of the century show up!) it could be the best binocular comet of 2017. Don’t miss it!

-Send those images to Universe Today’s Flickr page.
-Be sure to read about the brightest comets of the year and more in our 2017 Astronomical Guide, free from Universe Today.

Delta IV Delivers Daunting Display Powering International Military WGS-9 SatCom to Orbit

ULA Delta IV rocket streaks to orbit carrying the Wideband Global SATCOM (WGS-9) tactical communications satellite for the U.S. Air Force and international partners from Cape Canaveral Air Force Station, Fl, at 8:18 p.m. EDT on Mar. 18, 2017, in this long exposure photo taken on base. Credit: Ken Kremer/kenkremer.com
ULA Delta IV rocket streaks to orbit carrying the Wideband Global SATCOM (WGS-9) tactical communications satellite for the U.S. Air Force and international partners from Cape Canaveral Air Force Station, Fl, at 8:18 p.m. EDT on Mar. 18, 2017, in this long exposure photo taken on base. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – On the 70th anniversary year commemorating the United States Air Force, a ULA Delta IV rocket put on a daunting display of nighttime rocket fire power shortly after sunset Saturday, March 19 – powering a high speed military communications satellite to orbit that will significantly enhance the targeting firepower of forces in the field; and was funded in collaboration with America’s strategic allies.

The next generation Wideband Global SATCOM-9 (WGS-9) military comsat mission for the U.S. Force lifted off atop a United Launch Alliance (ULA) Delta IV from Space Launch Complex-37 (SLC-37) on Saturday, March 18 at 8:18 p.m. EDT at Cape Canaveral Air Force Station, Florida.

The launch and separation of the payload form the Delta upper stage was “fully successful,” said Major General David D. Thompson, Vice Commander Air Force Space Command, Peterson Air Force Base, CO, to our media gaggle soon after launch at the press view site on base.

“The WGS-9 mission is key event celebrating the 70th anniversary of the U.S. Air Force as a separate service. The USAF was created two years after World War II ended.”

“The theme of this year is ‘breaking Barriers.’”

A United Launch Alliance (ULA) Delta IV rocket carrying the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force launches at 8:18 p.m. EDT on Mar. 18, 2017from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

WGS-9 was delivered to a supersynchronous transfer orbit atop the ULA Delta IV Medium+ rocket.

The WGS-9 satellite was paid for by a six nation consortium that includes Canada, Denmark, Luxembourg, the Netherlands amd the United States. It joins 8 earlier WGS satellite already in orbit.

“WGS-9 was made possible by funding from our international partners,” Thompson emphasized.

Major General David D. Thompson, Vice Commander Air Force Space Command, Peterson Air Force Base, CO, and Brig. Gen. Wayne R. Monteith, Commander of the 45th Space Wing Commander and Eastern Range Director at Patrick Air Force Base, Fla, celebrate successful Wideband Global SATCOM (WGS-9) launch for the U.S. Air Force on ULA Delta IV from Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017, with the media gaggle on base. Credit: Julian Leek

It is the ninth satellite in the WGS constellation that serves as the backbone of the U.S. military’s global satellite communications.

“WGS provides flexible, high-capacity communications for the Nation’s warfighters through procurement and operation of the satellite constellation and the associated control systems,” according to the U.S. Air Force.

“WGS provides worldwide flexible, high data rate and long haul communications for marines, soldiers, sailors, airmen, the White House Communication Agency, the US State Department, international partners, and other special users.”

Launch of USAF WGS-8 milsatcom on ULA Delta IV rocket from pad 37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Dawn Leek Taylor

WGS-9 also counts as the second of at least a trio of launches from the Cape this March – with the possibility for a grand slam fourth at month’s end – if all goes well with another SpaceX Falcon 9 launch from pad 39A.

Blastoff of ULA Delta IV rocket carrying the Wideband Global SATCOM (WGS-9) comsat to orbit for the U.S. Air Force from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

The 217 foot tall Delta IV Medium+ rocket launched in the 5,4 configuration with a 5 meter diameter payload fairing that stands 47 feet tall, and 4 solid rocket boosters to augment the first stage thrust of the single common core booster.

The payload fairing was emblazoned with decals commemorating the 70th anniversary of the USAF, as well as Air Force, mission and ULA logos.

Orbital ATK manufactures the four solid rocket motors. The Delta IV common booster core was powered by an RS-68A liquid hydrogen/liquid oxygen engine producing 705,250 pounds of thrust at sea level.

A single RL10B-2 liquid hydrogen/liquid oxygen engine powered the second stage, known as the Delta Cryogenic Second Stage (DCSS).

The booster and upper stage engines are both built by Aerojet Rocketdyne. ULA constructed the Delta IV Medium+ (5,4) launch vehicle in Decatur, Alabama.

The DCSS will also serve as the upper stage for the maiden launch of NASA heavy lift SLS booster on the SLS-1 launch slated for late 2018. That DCSS/SLS-1 upper stage just arrived at the Cape last week – as I witnessed and reported here.

Saturday’s launch marks ULA’s 3rd launch in 2017 and the 118th successful launch since the company was formed in December 2006 as a joint venture between Boeing and Lockheed Martin.

The is the seventh flight in the Medium+ (5,4) configuration; all of which were for prior WGS missions.

ULA Delta IV rocket poised for sunset blastoff with the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about USAF/ULA WGS satellite, SpaceX EchoStar 23 and CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 21-25: “USAF/ULA WGS satellite launch, SpaceX EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Close-up view of nose cone encapsulating the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force slated to launch from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com

A Family Of Stars Torn Apart

The stunning, shaped clouds of gas in the Orion Nebula make it beautiful, but also make it difficult to see inside of. This image of the Orion Nebula was captured by the Hubble Telescope. Image: NASA, ESA, M. Robberto (STScI/ESA) and The Hubble Space Telescope Orion Treasury Project Team
The stunning, shaped clouds of gas in the Orion Nebula make it beautiful, but also make it difficult to see inside of. This image of the Orion Nebula was captured by the Hubble Telescope. Image: NASA, ESA, M. Robberto (STScI/ESA) and The Hubble Space Telescope Orion Treasury Project Team

It sometimes doesn’t take much to tear a family apart. A Christmas dinner gone wrong can do that. But for a family of stars to be torn apart, something really huge has to happen.

The dramatic break-up of a family of stars played itself out in the Orion Nebula, about 600 years ago. The Orion Nebula is one of the most studied objects in our galaxy. It’s an active star forming region, where much of the star birth is concealed behind clouds of dust. Advances in infrared and radio astronomy have allowed us to peer into the Nebula, and to watch a stellar drama unfolding.

This three-frame illustration shows how a grouping of stars can break apart, flinging the members into space. Panel 1: members of a multiple-star system orbiting each other. Panel 2: two of the stars move closer together in their orbits. Panel 3: the closely orbiting stars eventually either merge or form a tight binary. This event releases enough gravitational energy to propel all of the stars in the system outward, as shown in the third panel.
Credits: NASA, ESA, and Z. Levy (STScI)

Over the last few decades, observations showed the two of the stars in our young family travelling off in different directions. In fact, they were travelling in opposite directions, and moving at very high speeds. Much higher than stars normally travel at. What caused it?

Astronomers were able to piece the story together by re-tracing the positions of both stars back 540 years. All those centuries ago, around the same time that it was dawning on humanity that Earth revolved around the Sun instead of the other way around, both of the speeding stars were in the same location. This suggested that the two were part of a star system that had broken up for some reason. But their combined energy didn’t add up.

Now, the Hubble has provided another clue to the whole story, by spotting a third runaway star. They traced the third star’s path back 540 years and found that it originated in the same location as the others. That location? An area near the center of the Orion Nebula called the Kleinmann-Low Nebula.

This composite image of the Kleinmann-Low Nebula, part of the Orion Nebula complex, is composed of several pointings of the NASA/ESA Hubble Space Telescope in optical and near-infrared light. Infrared light allows to peer through the dust of the nebula and to see the stars therein. The revealed stars are shown with a bright red colour in the image. With this image, showing the central region of the Orion Nebula, scientists were looking for rogue planets and brown dwarfs. As side-effect they found a fast-moving runaway star. By ESA/Hubble, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=57169218

The team behind these new results, led by Kevin Luhman of Penn State University, will release their findings in the March 20, 2017 issue of The Astrophysical Journal Letters.

“The new Hubble observations provide very strong evidence that the three stars were ejected from a multiple-star system,” said Luhman. “Astronomers had previously found a few other examples of fast-moving stars that trace back to multiple-star systems, and therefore were likely ejected. But these three stars are the youngest examples of such ejected stars. They’re probably only a few hundred thousand years old. In fact, based on infrared images, the stars are still young enough to have disks of material leftover from their formation.”

Young stars have a disk of gas and dust around them called a protoplanetary disk. Credit: NASA/JPL-Caltech

“The Orion Nebula could be surrounded by additional fledging stars that were ejected from it in the past and are now streaming away into space.” – Lead Researcher Kevin Luhman, Penn State University.

The three stars are travelling about 30 times faster than most of the Nebula’s other stellar inhabitants. Theory has predicted the phenomenon of these breakups in regions where newborn stars are crowded together. These gravitational back-and-forths are inevitable. “But we haven’t observed many examples, especially in very young clusters,” Luhman said. “The Orion Nebula could be surrounded by additional fledging stars that were ejected from it in the past and are now streaming away into space.”

The key to this mystery is the recently discovered third star. But this star, the so-called “source x”, was discovered by accident. Luhman is part of a team using the Hubble to hunt for free-floating planets in the Orion Nebula. A comparison of Hubble infrared images from 2015 with images from 1998 showed that source x had changed its position. This indicated that the star was moving at a speed of about 130,000 miles per hour.

The image by NASA’s Hubble Space Telescope shows a grouping of young stars, called the Trapezium Cluster (center). The box just above the Trapezium Cluster outlines the location of the three stars. A close-up of the stars is top right. The birthplace of the multi-star system is marked “initial position.” Two of the stars — labeled BN, and “I,” for source I — were discovered decades ago. Source I is embedded in thick dust and cannot be seen. The third star, “x,” for source x, was recently discovered to have moved noticeably between 1998 and 2015, as shown in the inset image at bottom right.
Credits: NASA, ESA, K. Luhman (Penn State University), and M. Robberto (STScI)

Luhmann then re-traced source x’s path and it led to the same position as the other 3 runaway stars 540 years ago: the Kleinmann-Low Nebula.

According to Luhmann, the three stars were most likely ejected from their system due to gravitational fluctuations that should be common in a high-population area of newly-born stars. Two of the stars can come very close together, either forming a tight binary system or even merging. That throws the gravitational parameters of the system out of whack, and other stars can be ejected. The ejection of those stars can also cause fingers of matter to flow out of the system.

As we get more powerful telescopes operating in the infrared, we should be able to clarify exactly what happens in areas of intense star formation like the Orion Nebula and its embedded Kleinmann-Low Nebula. The James Webb Space Telescope should advance our understanding greatly. If that’s the case, then not only will the details of star birth and formation become much clearer, but so will the break up of young families of stars.