Since Aliens Obey the Laws of Physics, Can We Guess What They Look Like?

Credit: Pixabay

Since time immemorial, humans have gazed up at the stars and wondered if we’re alone in the universe. We have asked if there are other intelligent beings out there in the vastness of the cosmos, also known as extraterrestrial intelligence (ET). Yet, despite our best efforts, we have yet to confirm the existence of ET outside of the Earth. While the search continues, it’s fair to speculate if they might look “human” or humanoid in appearance, or if they could look like something else entirely. Here, we present a general examination and discussion with astrobiologists pertaining to what ET might look like and what environmental parameters (e.g., gravity, atmospheric makeup, stellar activity) might cause them to evolve differently than humans.

Continue reading “Since Aliens Obey the Laws of Physics, Can We Guess What They Look Like?”

The Most Compelling Places to Search for Life Will Look Like “Anomalies”

Will it be possible someday for astrobiologists to search for life "as we don't know it"? Credit: NASA/Jenny Mottar

In the past two and a half years, two next-generation telescopes have been sent to space: NASA’s James Webb Space Telescope (JWST) and the ESA’s Euclid Observatory. Before the decade is over, they will be joined by NASA’s Nancy Grace Roman Space Telescope (RST), Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx), and the ESA’s PLAnetary Transits and Oscillations of stars (PLATO) and ARIEL telescopes. These observatories will rely on advanced optics and instruments to aid in the search and characterization of exoplanets with the ultimate goal of finding habitable planets.

Along with still operational missions, these observatories will gather massive volumes of high-resolution spectroscopic data. Sorting through this data will require cutting-edge machine-learning techniques to look for indications of life and biological processes (aka. biosignatures). In a recent paper, a team of scientists from the Institute for Fundamental Theory at the University of Florida (UF-IFL) recommended that future surveys use machine learning to look for anomalies in the spectra, which could reveal unusual chemical signatures and unknown biosignatures.

Continue reading “The Most Compelling Places to Search for Life Will Look Like “Anomalies””

Forget the Habitable Zone – We Need to Find the Computational Zone

This artist’s impression shows the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. The double star Alpha Centauri AB also appears in the image between the planet and Proxima itself. Proxima b is a little more massive than the Earth and orbits in the habitable zone around Proxima Centauri, where the temperature is suitable for liquid water to exist on its surface. Credit: ESO/M. Kornmesser

Astronomers are currently searching for signs of life in the “habitable zones” of nearby stars, which is defined as the band around a star where liquid water can potentially exist. But a recent paper argues that we need to take a more nuanced and careful approach, based not on the potential for life, but the potential for computation.

Continue reading “Forget the Habitable Zone – We Need to Find the Computational Zone”

Why ‘Contact’ still resonates after 25 years

Credit: Fuawas; permission to share under the under the Creative Commons Attribution-Share Alike 4.0 International license.

25 years ago, the film Contact made its theatrical debut starring Jodie Foster and Matthew McConaughey and told the story of Dr. Eleanor Arroway (Jodie Foster) who picked up a radio signal from the star Vega and how this discovery impacted not just herself, but humanity as a whole. Over time, she discovers the signal has embedded instructions sent by the aliens to build a device capable of sending one person into outer space, presumably to meet the Vegans.

Continue reading “Why ‘Contact’ still resonates after 25 years”

Here are Four Ways JWST Could Detect Alien Life

Artist conception of the James Webb Space Telescope. Credit: NASA GSFC/CIL/Adriana Manrique Gutierrez

Less than a year after it went to space, the James Webb Space Telescope (JWST) has already demonstrated its worth many times over. The images it has acquired of distant galaxies, nebulae, exoplanet atmospheres, and deep fields are the most detailed and sensitive ever taken. And yet, one of the most exciting aspects of its mission is just getting started: the search for evidence of life beyond Earth. This will consist of Webb using its powerful infrared instruments to look for chemical signatures associated with life and biological processes (aka. biosignatures).

The chemical signatures vary, each representing a different pathway toward the potential discovery of life. According to The Conversation’s Joanna Barstow, a planetary scientist and an Ernest Rutherford Fellow at The Open University specializing in the study of exoplanet atmospheres, there are four ways that Webb could do this. These include looking for chemicals that lifeforms depend on, chemical byproducts produced by living organisms, chemicals essential to maintaining a stable climate, and chemicals that shouldn’t coexist.

Continue reading “Here are Four Ways JWST Could Detect Alien Life”

Nitrous Oxide, aka “Laughing gas”, Could be an Indication of Life in an Exoplanet

Illustration showing the possible surface of TRAPPIST-1f, one of the newly discovered planets in the TRAPPIST-1 system. Credits: NASA/JPL-Caltech
Illustration showing the possible surface of TRAPPIST-1f, one of the newly discovered planets in the TRAPPIST-1 system. It's a very active flare star. Credits: NASA/JPL-Caltech

A team of astronomers have proposed to hunt for signs of life by looking for the signature of nitrous oxide in alien atmospheres. It’s laughing gas, but it’s no joke.

Continue reading “Nitrous Oxide, aka “Laughing gas”, Could be an Indication of Life in an Exoplanet”

It Appears That Enceladus is Even More Habitable Than we Thought

Phosphorus is likely abundant in the waters of Enceladus. Credit: Southwest Research Institute

The problem with looking for life on other worlds is that we only know of one planet with life. Earth has a wondrous variety of living creatures, but they all evolved on a single world, and their heritage stems from a single tree of life. So astrobiologists have to be both clever and careful when looking for habitable worlds, even when they narrow the possibilities to life similar to ours.

Continue reading “It Appears That Enceladus is Even More Habitable Than we Thought”

Shallow Pockets of Water Under the ice on Europa Could Bring Life Close to its Surface

This artist’s conception shows how double ridges on the surface of Jupiter’s moon Europa may form over shallow, refreezing water pockets within the ice shell. This mechanism is based on the study of an analogous double ridge feature found on Earth’s Greenland Ice Sheet. (Image credit: Justice Blaine Wainwright)

Beneath the surface of Jupiter’s icy moon Europa, there’s an ocean up to 100 km (62 mi) deep that has two to three times the volume of every ocean on Earth combined. Even more exciting is how this ocean is subject to hydrothermal activity, which means it may have all the necessary ingredients for life. Because of this, Europa is considered one of the most likely places for extraterrestrial life (beyond Mars). Hence, mission planners and astrobiologists are eager to send a mission there to study it closer.

Unfortunately, Europa’s icy surface makes the possibility of sampling this ocean rather difficult. According to the two predominant models for Europa’s structure, the ice sheet could be a few hundred meters to several dozen kilometers thick. Luckily, new research by a team from Stanford University has shown that Europa’s icy shell may have an abundance of water pockets inside, as indicated by features on the surface that look remarkably like icy ridges here on Earth.

Continue reading “Shallow Pockets of Water Under the ice on Europa Could Bring Life Close to its Surface”

Why Would an Alien Civilization Send Out Von Neumann Probes? Lots of Reasons, says a new Study

Artist's concept of the New Horizons spacecraft encountering a Kuiper Belt object, part of an extended mission after the spacecraft’s July 2015 Pluto flyby. Credits: NASA/JHUAPL/SwRI

In 1948-49, mathematician, physicist, computer scientist, and engineer John von Neumann introduced the world to his idea of “Universal Assemblers,” a species of self-replicating robots. Von Neumann’s ideas and notes were later compiled in a book titled “Theory of self-reproducing automata,” published in 1966 (after his death). In time, this theory would have implications for the Search for Extraterrestrial Intelligence (SETI), with theorists stating that advanced intelligence must have deployed such probes already.

The reasons and technical challenges of taking the self-replicating probe route are explored in a recent paper by Gregory L. Matloff, an associate professor at the New York City College of Technology (NYCCT). In addition to exploring why an advanced species would opt to explore the galaxy using Von Neumann probes (which could include us someday), he explored possible methods for interstellar travel, strategies for exploration, and where these probes might be found.

Continue reading “Why Would an Alien Civilization Send Out Von Neumann Probes? Lots of Reasons, says a new Study”