100,000 Galaxies, and No Obvious Signs of Life

Beam us up, Scotty. There’s no signs of intelligent life out there. At least, no obvious signs, according to a recent survey performed by researchers at Penn State University. After reviewing data taken by the NASA Wide-field Infrared Survey Explorer (WISE) space telescope of over 100,000 galaxies, there appears to be little evidence that advanced, spacefaring civilizations exist in any of them.

First deployed in 2009, the WISE mission has been able to identify thousands of asteroids in our solar system and previously undiscovered star clusters in our galaxy. However, Jason T. Wright, an assistant professor of astronomy and astrophysics at the Center for Exoplanets and Habitable Worlds at Penn State University, conceived of and initiated a new field of research – using the infrared data to assist in the search for signs of extra-terrestrial civilizations.

And while their first look did not yield much in the way of results, it is an exciting new area of research and provides some very useful information on one of the greatest questions ever asked: are we alone in the universe?

“The idea behind our research is that, if an entire galaxy had been colonized by an advanced spacefaring civilization, the energy produced by that civilization’s technologies would be detectable in mid-infrared wavelengths,” said Wright, “exactly the radiation that the WISE satellite was designed to detect for other astronomical purposes.”

This logic is in keeping with the theories of Russian astronomer Nikolai Kardashev and theoretical physicist Freeman Dyson. In 1964, Kardashev proposed that a civilization’s level of technological advancement could be measured based on the amount of energy that civilization is able to utilize.

Freemon Dyson theorized that eventually, a civilization would be able to build a megastructure around its star to capture all its energy. Credit: SentientDevelopments.com
Freemon Dyson theorized that eventually, a civilization would be able to enclose its star with a megastructure that would to capture and utilize its energy. Credit: sentientdevelopments.com

To characterize the level of extra-terrestrial development, Kardashev developed a three category system – Type I, II, and III civilizations –  known as the “Kardashev Scale”. A Type I civilization uses all available resources on its home planet, while a Type II is able to harness all the energy of its star. Type III civilizations are those that are advanced enough to harness the energy of their entire galaxy.

Similarly, Dyson proposed in 1960 that advanced alien civilizations beyond Earth could be detected by the telltale evidence of their mid-infrared emissions. Believing that a sufficiently advanced civilization would be able to enclose their parent star, he believed it would be possible to search for extraterrestrials by looking for large objects radiating in the infrared range of the electromagnetic spectrum.

These thoughts were expressed in a short paper submitted to the journal Science, entitled “Search for Artificial Stellar Sources of Infrared Radiation“. In it, Dyson proposed that an advanced species would use artificial structures – now referred to as “Dyson Spheres” (though he used the term “shell” in his paper) – to intercept electromagnetic radiation with wavelengths from visible light downwards and radiating waste heat outwards as infrared radiation.

“Whether an advanced spacefaring civilization uses the large amounts of energy from its galaxy’s stars to power computers, space flight, communication, or something we can’t yet imagine, fundamental thermodynamics tells us that this energy must be radiated away as heat in the mid-infrared wavelengths,” said Wright. “This same basic physics causes your computer to radiate heat while it is turned on.”

Wide-field Infrared Survey Explorer, or WISE, will scan the entire sky in infrared light, picking up the glow of hundreds of millions of objects and producing millions of images
The Wide-field Infrared Survey Explorer (WISE) scans the entire sky in infrared light, picking up the glow of hundreds of millions of objects and producing millions of images. Credit: NASA/JPL-Caltech

However, it was not until space-based telescopes like WISE were deployed that it became possible to make sensitive measurements of this radiation. WISE is one of three infrared missions currently in space, the other two being NASA’s Spitzer Space Telescope and the Herschel Space Observatory – a European Space Agency mission with important NASA participation.

WISE is different from these missions in that it surveys the entire sky and is designed to cast a net wide enough to catch all sorts of previously unseen cosmic interests. And there are few things more interesting than the prospect of advanced alien civilizations!

To search for them, Roger Griffith – a postbaccalaureate researcher at Penn State and the lead author of the paper – and colleagues scoured the entries in the WISE satellites database looking for evidence of a galaxy that was emitting too much mid-infrared radiation. He and his team then individually examined and categorized 100,000 of the most promising galaxy images.

And while they didn’t find any obvious signs of a Type II civilization or Dyson Spheres in any of them, they did find around 50 candidates that showed unusually high levels of mid-infrared radiation. The next step will be to confirm whether or not these signs are due to natural astronomical processes, or could be an indication of a highly advanced civilization tapping their parent star for energy.

WISE will find the most luminous galaxies in the universe -- incredibly energetic objects bursting with new stars. The infrared telescope can see the glow of dust that shrouds these galaxies, hiding them from visible-light telescopes. An example of a dusty, luminous galaxy is shown here in this infrared portrait of the "Cigar" galaxy taken by NASA's Spitzer Space Telescope. Dust is color-coded red, and starlight blue. Credit: NASA/JPL-Caltech/Steward Observatory
WISE will take images of the most luminous galaxies in the universe, such as the “Cigar” galaxy shown here – taken by NASA’s Spitzer Space Telescope. Credit: NASA/JPL-Caltech/Steward Observatory

In any case, the team’s findings were quite interesting and broke new ground in what is sure to be an ongoing area of research. The only previous study, according to the G-HAT team, surveyed only about 100 galaxies, and was unable to examine them in the infrared to see how much heat they emitted. What’s more, the research may help shed some light on the burning questions about the very existence of intelligent, extra-terrestrial life in our universe.

“Our results mean that, out of the 100,000 galaxies that WISE could see in sufficient detail, none of them is widely populated by an alien civilization using most of the starlight in its galaxy for its own purposes,” said Wright. “That’s interesting because these galaxies are billions of years old, which should have been plenty of time for them to have been filled with alien civilizations, if they exist. Either they don’t exist, or they don’t yet use enough energy for us to recognize them.”

Alas, it seems we are no closer to resolving the Fermi Paradox. But for the first time, it seems that investigations into the matter are moving beyond theoretical arguments. And given time, and further refinements in our detection methods, who knows what we might find lurking out there? The universe is very, very big place, after all.

The research team’s first research paper about their Glimpsing Heat from Alien Technologies Survey (G-HAT) survey appeared in the Astrophysical Journal Supplement Series on April 15, 2015.

Further Reading: Astrophysical Journal via EurekAlert, JPL-NASA

Alien Artifacts May Be Here… Just Hard To Find!

[/caption]

Greeting cards in space… We’ve certainly sent our share of them, haven’t we? So if humankind is foresighted enough to leave messages of our whereabouts – and our personalities – in space, then why haven’t other alien civilizations done the same? That’s a question a pair of postdoctoral researchers at Penn State are asking. By using mathematical equations, they’re showing us we simply haven’t looked in enough places… and would we recognize an alien artifact even if it were staring us in the face?

“The vastness of space, combined with our limited searches to date, implies that any remote unpiloted exploratory probes of extraterrestrial origin would likely remain unnoticed,” report Jacob Haqq-Misra, Rock Ethics Institute, and Ravi Kumar Kopparapu, Earth and Environmental Systems Institute, in a paper accepted by Acta Astronautica and posted online on ArXiv.

So far, we simply haven’t found any evidence of alien artifacts in our solar system – or anywhere else for that matter. According to the Penn State article, the Fermi paradox, originally formulated by Enrico Fermi, asks, if intelligent life is common, why have no technological civilizations been observed. Well, shucks… Maybe they’re shy – and maybe they’ve self-annihilated. There are hundreds of reasons “why” we haven’t found anything, but the most pertinent answer is we simply aren’t looking for the right thing in the right place at the right time. For example, have a look at just a few of the things we humans have sent into vastness of space to act as our ambassadors…

Duke Family Portrait: Apollo 16 Journal - Courtesy of Markus Mehring - Credit: NASA AS16-117-18841
Pioneer 10 and 11's famed Plaque features a design engraved into a gold-anodized aluminum plate, 152 by 229 millimeters (6 by 9 inches), attached to the spacecrafts' antenna support struts to help shield it from erosion by interstellar dust. Image Credit: NASA
Three LEGO figurines representing the Roman god Jupiter, his wife Juno and Galileo Galilei are shown here aboard the Juno spacecraft. Image credit: NASA/JPL-Caltech/KSC NASA's Jupiter-bound Juno spacecraft will carry the 1.5-inch likeness of Galileo Galilei, the Roman god Jupiter and his wife Juno to Jupiter when the spacecraft launches this Friday, Aug. 5. The inclusion of the three mini-statues, or figurines, is part of a joint outreach and educational program developed as part of the partnership between NASA and the LEGO Group to inspire children to explore science, technology, engineering and mathematics. Credit: NASA

And this is only just the tip of the human iceberg. How many of us have sent our name on missions to Mars, Pluto and more? There are footprints, plaques, flags, golf balls and an endless parade of human artifacts scattered far and wide. We might think they’re in plain sight, but would an alien culture see that? Would we comprehend what an alien culture might consider to be a greeting or sign or their presence? As far as we know, there could be unpiloted probes from alien civilizations out there right now, checking us out… But unless it were something the size of a proverbial school bus dropping itself on a house in Essex, our own arrogance would probably keep us from noticing it. And then again… it just might be hidden.

“Extraterrestrial artifacts may exist in the Solar System without our knowledge simply because we have not yet searched sufficiently,” said Haqq-Misra and Kopparapu. “Few if any of the attempts would be capable of detecting a 1 to 10 meter (3 to 33 foot) probe.”

Haqq-Misra and Kopparapu use a probabilistic method to determine the feasibility of aliens leaving us clues to their existence. Their work points to the Solar System as a fixed volume and then calculates the percentages of that volume that would need to be thoroughly searched to detect an alien probe or artifact. These searches would have to involve technology able to detect small, foreign objects and then apply it to a smaller portion of the volume to look for results. It’s a study which hasn’t been undertaken so far. We simply cannot say we’ve looked everywhere…

“The surface of the Earth is one of the few places in the Solar System that has been almost completely examined at a spatial resolution of less than 3 feet,” said Haqq-Misra and Kopparapu.

Sure. There are still a lot of nooks and crannies on Earth that haven’t been thoroughly explored – and our oceans are a good example. However, when it comes to searching elsewhere, it’s been a hit-or-miss proposition. While mapping the surface of the Moon, the Lunar Reconnaissance Orbiter is looking at the surface at a resolution of about 20 inches. It may take a few years, but perhaps something isn’t buried under the regolith. As for Mars, chances are slight – but new things seem to be discovered on Mars each day, don’t they? How about the LaGrange points, or the asteroid belt? Things could be hiding there, too.

“Searches to date of the Solar System are sufficiently incomplete that we cannot rule out the possibility that non terrestrial artifacts are present and may even be observing us,” said Haqq-Misra and Kopparapu. They add that “the completeness of our search for non terrestrial objects will inevitably increase as we continue to explore the Moon, Mars and other nearby regions of space.”

After all, what did we expect? E.T. to interrupt a prime time television program to announce their presence? A take-over of the Internet? Maybe each time a meteor makes it to Earth it’s a little calling card that life-possible organisms exists outside our own little sphere…

And maybe somebody needs to drop a bus on us.

Original Story Source: Penn State News Release.