Enceladus is Filled with Tasty Food for Bacteria

As soon as the Cassini-Huygens mission arrived the Saturn system in 2004, it began to send back a number of startling discoveries. One of the biggest was the discovery of plume activity around the southern polar region of Saturn’s moon Enceladus’, which appears to be the result of geothermal activity and an ocean in the moon’s interior. This naturally gave rise to a debate about whether or not this interior ocean could support life.

Since then, multiple studies have been conducted to get a better idea of just how likely it is that life exists inside Enceladus. The latest comes from the University of Washington’s Department of Earth and Space Sciences (ESS), which shows that concentrations of carbon dioxide, hydrogen and methane in Enceladus’ interior ocean (as well as its pH levels) are more conducive to life than previously thought.

Continue reading “Enceladus is Filled with Tasty Food for Bacteria”

An Insulating Layer of Gas Could Keep a Liquid Ocean Inside Pluto

In July of 2015, NASA’s New Horizons mission made history by becoming the first spacecraft to ever conduct a flyby with Pluto. In addition to providing the world with the first up-close images of this distant world, New Horizons‘ suite of scientific instruments also provided scientists with a wealth of information about Pluto – including its surface features, composition, and atmosphere.

The images the spacecraft took of the surface also revealed unexpected features like the basin named Sputnik Planitia – which scientists saw as an indication of a subsurface ocean. In a new study led by researchers from the University of Hokkaido, the presence of a thin layer of clathrate hydrates at the base of Pluto’s ice shell would ensure that this world could support an ocean.

Continue reading “An Insulating Layer of Gas Could Keep a Liquid Ocean Inside Pluto”

NASA Wants to Send a Low-Cost Mission to Explore Neptune’s Moon Triton

In the coming years, NASA has some bold plans to build on the success of the New Horizons mission. Not only did this spacecraft make history by conducting the first-ever flyby of Pluto in 2015, it has since followed up on that by making the first encounter in history with a Kuiper Belt Object (KBO) – 2014 MU69 (aka. Ultima Thule).

Given the wealth of data and stunning images that resulted from these events (which NASA scientists are still processing), other similarly-ambitious missions to explore the outer Solar System are being considered. For example, there is the proposal for the Trident spacecraft, a Discovery-class mission that would reveal things about Neptune’s largest moon, Triton.

Continue reading “NASA Wants to Send a Low-Cost Mission to Explore Neptune’s Moon Triton”

The Closest Star to the Sun, Proxima Centauri, has a Planet in the Habitable Zone. Life Could be There Right Now

In August of 2016, astronomers from the European Southern Observatory (ESO) announced the discovery of an exoplanet in the neighboring system of Proxima Centauri. The news was greeted with consider excitement, as this was the closest rocky planet to our Solar System that also orbited within its star’s habitable zone. Since then, multiple studies have been conducted to determine if this planet could actually support life.

Unfortunately, most of the research so far has indicated that the likelihood of habitability are not good. Between Proxima Centauri’s variability and the planet being tidally-locked with its star, life would have a hard time surviving there. However, using lifeforms from early Earth as an example, a new study conducted by researchers from the Carl Sagan Institute (CSI) has shows how life could have a fighting chance on Proxima b after all.

Continue reading “The Closest Star to the Sun, Proxima Centauri, has a Planet in the Habitable Zone. Life Could be There Right Now”

Which Habitable Zones are the Best to Actually Search for Life?

Looking to the future, NASA and other space agencies have high hopes for the field of extra-solar planet research. In the past decade, the number of known exoplanets has reached just shy of 4000, and many more are expected to be found once next-generations telescopes are put into service. And with so many exoplanets to study, research goals have slowly shifted away from the process of discovery and towards characterization.

Unfortunately, scientists are still plagued by the fact that what we consider to be a “habitable zone” is subject to a lot of assumptions. Addressing this, an international team of researchers recently published a paper in which they indicated how future exoplanet surveys could look beyond Earth-analog examples as indications of habitability and adopt a more comprehensive approach.

Continue reading “Which Habitable Zones are the Best to Actually Search for Life?”

Seeding the Milky Way with Life Using Genesis Missions

When exploring other planets and celestial bodies, NASA missions are required to abide by the practice known as “planetary protection“. This practice states that measures must be taken during the designing of a mission to ensure that biological contamination of both the planet/body being explored and Earth (in the case of sample-return missions) are prevented.

Looking to the future, there is the question of whether or not this same practice will be extended to extra-solar planets. If so, it would conflict with proposals to “seed” other worlds with microbial life to kick-start the evolutionary process. To address this, Dr. Claudius Gros of Goethe University’s Institute for Theoretical Physics recently published a paper that looks at planetary protection and makes the case for “Genesis-type” missions.

Continue reading “Seeding the Milky Way with Life Using Genesis Missions”

ARCHIMEDES: Digging into the ice on Europa with lasers

Ever since the Pioneer and Voyager probes passed through the Jovian system in the 1970s, NASA and other space agencies have dreamed of one-day sending a mission to Europa. Beyond Earth, it is considered one of the most promising candidates for finding life, which could exist in the subsurface ocean that lies beneath the moon’s icy crust.

One of these concepts is known as the Cool High Impact Method for Exploring Down into Europan Subsurface (ARCHIMEDES), a proposed direct-laser penetrator that will use a laser light carried by an optical fiber tether to penetrate Europa’s icy crust. This mission could provide future missions with access to the ocean that exists beneath Europa’s surface and enable the search for life there.

Continue reading “ARCHIMEDES: Digging into the ice on Europa with lasers”

Exoplanets Will Need Both Continents and Oceans to Form Complex Life

When it comes to the search for extra-terrestrial life, scientists have a tendency to be a bit geocentric – i.e. they look for planets that resemble our own. This is understandable, seeing as how Earth is the only planet that we know of that supports life. As result, those searching for extra-terrestrial life have been looking for planets that are terrestrial (rocky) in nature, orbit within their stars habitable zones, and have enough water on their surfaces.

In the course of discovering several thousand exoplanets, scientists have found that many may in fact be “water worlds” (planets where up to 50% of their mass is water). This naturally raises some questions, like how much water is too much, and could too much land be a problem as well? To address these, a pair of researchers from the Harvard Smithsonian Center for Astrophysics (CfA) conducted a study to determine how the ratio between water and land masses can contribute to life.

Continue reading “Exoplanets Will Need Both Continents and Oceans to Form Complex Life”

The Milky Way Could Be Spreading Life From Star to Star

For almost two centuries, scientists have theorized that life may be distributed throughout the Universe by meteoroids, asteroids, planetoids, and other astronomical objects. This theory, known as Panspermia, is based on the idea that microorganisms and the chemical precursors of life are able to survive being transported from one star system to the next.

Expanding on this theory, a team of researchers from the Harvard Smithsonian Center for Astrophysics (CfA) conducted a study that considered whether panspermia could be possible on a galactic scale. According to the model they created, they determined that the entire Milky Way (and even other galaxies) could be exchanging the components necessary for life.

Continue reading “The Milky Way Could Be Spreading Life From Star to Star”

Another Way to Search for Biosignatures of Alien Life. The Material Blasted out of Asteroid Impacts

In recent years, the number of confirmed extra-solar planets has risen exponentially. As of the penning of the article, a total of 3,777 exoplanets have been confirmed in 2,817 star systems, with an additional 2,737 candidates awaiting confirmation. What’s more, the number of terrestrial (i.e. rocky) planets has increased steadily, increasing the likelihood that astronomers will find evidence of life beyond our Solar System.

Unfortunately, the technology does not yet exist to explore these planets directly. As a result, scientists are forced to look for what are known as “biosignatures”, a chemical or element that is associated with the existence of past or present life. According to a new study by an international team of researchers, one way to look for these signatures would be to examine material ejected from the surface of exoplanets during an impact event.

The study – titled “Searching for biosignatures in exoplanetary impact ejecta“, was published in the scientific journal Astrobiology and recently appeared online. It was led by Gianni Cataldi, a researcher from Stockholm University’s Astrobiology Center. He was joined by scientists from the LESIA-Observatoire de Paris, the Southwest Research Institute (SwRI), the Royal Institute of Technology (KTH), and the European Space Research and Technology Center (ESA/ESTEC).

Artist’s impression of what an asteroid hitting the Earth might look like. Credit: NASA/Don Davis.

As they indicate in their study, most efforts to characterize exoplanet biospheres have focused on the planets’ atmospheres. This consists of looking for evidence of gases that are associated with life here on Earth – e.g. carbon dioxide, nitrogen, etc. – as well as water. AsĀ Cataldi told Universe Today via email:

“We know from Earth that life can have a strong impact on the composition of the atmosphere. For example, all the oxygen in our atmosphere is of biological origin. Also, oxygen and methane are strongly out of chemical equilibrium because of the presence of life. Currently, it is not yet possible to study the atmospheric composition of Earth-like exoplanets, however, such a measurement is expected to become possible in the foreseeable future. Thus, atmospheric biosignatures are the most promising way to search for extraterrestrial life.”

However, Cataldi and his colleagues considered the possibility of characterizing a planet’s habitability by looking for signs of impacts and examining the ejecta. One of the benefits of this approach is that ejecta escapes lower gravity bodies, such as rocky planets and moons, with the greatest ease. The atmospheres of these types of bodies are also very difficult to characterize, so this method would allow for characterizations that would not otherwise be possible.

And as Cataldi indicated, it would also be complimentary to the atmospheric approach in a number of ways:

“First, the smaller the exoplanet, the more difficult it is to study its atmosphere. On the contrary, smaller exoplanets produce larger amounts of escaping ejecta because their surface gravity is lower, making ejecta from smaller exoplanet easier to detect. Second, when thinking about biosignatures in impact ejecta, we think primarily of certain minerals. This is because life can influence the mineralogy of a planet either indirectly (e.g. by changing the composition of the atmosphere and thus allowing new minerals to form) or directly (by producing minerals, e.g. skeletons). Impact ejecta would thus allow us to study a different sort of biosignature, complementary to atmospheric signatures.”

Another benefit to this method is the fact that it takes advantage of existing studies that have examined the impacts of collisions between astronomical objects. For instance, multiple studies have been conducted that have attempted to place constraints on the giant impact that is believed to have formed the Earth-Moon system 4.5 billion years ago (aka. the Giant Impact Hypothesis).

While such giant collisions are thought to have been common during the final stage of terrestrial planet formation (lasting for approximately 100 million years), the team focused on impacts of asteroidal or cometary bodies, which are believed to occur over the entire lifetime of an exoplanetary system. Relying on these studies, Cataldi and his colleagues were able to create models for exoplanet ejecta.

As Cataldi explained, they used the results from the impact cratering literature to estimate the amount of ejecta created. To estimate the signal strength of circumstellar dust disks created by the ejecta, they used the results from debris disk (i.e. extrasolar analogues of the Solar System’s Main Asteroid Belt) literature. In the end, the results proved rather interesting:

“We found that an impact of a 20 km diameter body produces enough dust to be detectable with current telescopes (for comparison, the size of the impactor that killed the dinosaurs 65 million years ago is though to be around 10 km). However, studying the compositionĀ of the ejected dust (e.g. search for biosignatures) is not in the reach of current telescopes. In other words, with current telescopes, we could confirm the presence of ejected dust, but not study its composition.”

Perspective view looking from an unnamed crater (bottom right) towards the Worcester Crater. The region sits at the mouth of Kasei Valles, where fierce floodwaters emptied into Chryse Planitia. Credit: ESA/DLR/FU Berlin

In short, studying material ejected from exoplanets is within our reach and the ability to study its composition someday will allow astronomers to be able to characterize the geology of an exoplanet – and thus place more accurate constraints on its potential habitability. At present, astronomers are forced to make educated guesses about a planet’s composition based on its apparent size and mass.

Unfortunately, a more detailed study that could determine the presence of biosignatures in ejecta is not currently possible, and will be very difficult for even next-generation telescopes like the James Webb Space Telescope (JWSB) or Darwin. In the meantime, the study of ejecta from exoplanets presents some very interesting possibilities when it comes to exoplanet studies and characterization. As Cataldi indicated:

“By studying the ejecta from an impact event, we could learn something about the geology and habitability of the exoplanet and potentially detect a biosphere. The method is the only way I know to access the subsurface of an exoplanet. In this sense, the impact can be seen as a drilling experiment provided by nature. Our study shows that dust produced in an impact event is in principle detectable, and future telescopes might be able to constrain the composition of the dust, and therefore the composition of the planet.”

In the coming decades, astronomers will be studying extra-solar planets with instruments of increasing sensitivity and power in the hopes of finding indications of life. Given time, searching for biosignatures in the debris around exoplanets created by asteroid impacts could be done in tandem with searchers for atmospheric biosignatures.

With these two methods combined, scientists will be able to say with greater certainty that distant planets are not only capable of supporting life, but are actively doing so!

Further Reading: Astrobiology, arXiv