Seeding the Milky Way with Life Using Genesis Missions

When exploring other planets and celestial bodies, NASA missions are required to abide by the practice known as “planetary protection“. This practice states that measures must be taken during the designing of a mission to ensure that biological contamination of both the planet/body being explored and Earth (in the case of sample-return missions) are prevented.

Looking to the future, there is the question of whether or not this same practice will be extended to extra-solar planets. If so, it would conflict with proposals to “seed” other worlds with microbial life to kick-start the evolutionary process. To address this, Dr. Claudius Gros of Goethe University’s Institute for Theoretical Physics recently published a paper that looks at planetary protection and makes the case for “Genesis-type” missions.

Continue reading “Seeding the Milky Way with Life Using Genesis Missions”

ARCHIMEDES: Digging into the ice on Europa with lasers

Ever since the Pioneer and Voyager probes passed through the Jovian system in the 1970s, NASA and other space agencies have dreamed of one-day sending a mission to Europa. Beyond Earth, it is considered one of the most promising candidates for finding life, which could exist in the subsurface ocean that lies beneath the moon’s icy crust.

One of these concepts is known as the Cool High Impact Method for Exploring Down into Europan Subsurface (ARCHIMEDES), a proposed direct-laser penetrator that will use a laser light carried by an optical fiber tether to penetrate Europa’s icy crust. This mission could provide future missions with access to the ocean that exists beneath Europa’s surface and enable the search for life there.

Continue reading “ARCHIMEDES: Digging into the ice on Europa with lasers”

Exoplanets Will Need Both Continents and Oceans to Form Complex Life

When it comes to the search for extra-terrestrial life, scientists have a tendency to be a bit geocentric – i.e. they look for planets that resemble our own. This is understandable, seeing as how Earth is the only planet that we know of that supports life. As result, those searching for extra-terrestrial life have been looking for planets that are terrestrial (rocky) in nature, orbit within their stars habitable zones, and have enough water on their surfaces.

In the course of discovering several thousand exoplanets, scientists have found that many may in fact be “water worlds” (planets where up to 50% of their mass is water). This naturally raises some questions, like how much water is too much, and could too much land be a problem as well? To address these, a pair of researchers from the Harvard Smithsonian Center for Astrophysics (CfA) conducted a study to determine how the ratio between water and land masses can contribute to life.

Continue reading “Exoplanets Will Need Both Continents and Oceans to Form Complex Life”

The Milky Way Could Be Spreading Life From Star to Star

For almost two centuries, scientists have theorized that life may be distributed throughout the Universe by meteoroids, asteroids, planetoids, and other astronomical objects. This theory, known as Panspermia, is based on the idea that microorganisms and the chemical precursors of life are able to survive being transported from one star system to the next.

Expanding on this theory, a team of researchers from the Harvard Smithsonian Center for Astrophysics (CfA) conducted a study that considered whether panspermia could be possible on a galactic scale. According to the model they created, they determined that the entire Milky Way (and even other galaxies) could be exchanging the components necessary for life.

Continue reading “The Milky Way Could Be Spreading Life From Star to Star”

Another Way to Search for Biosignatures of Alien Life. The Material Blasted out of Asteroid Impacts

In recent years, the number of confirmed extra-solar planets has risen exponentially. As of the penning of the article, a total of 3,777 exoplanets have been confirmed in 2,817 star systems, with an additional 2,737 candidates awaiting confirmation. What’s more, the number of terrestrial (i.e. rocky) planets has increased steadily, increasing the likelihood that astronomers will find evidence of life beyond our Solar System.

Unfortunately, the technology does not yet exist to explore these planets directly. As a result, scientists are forced to look for what are known as “biosignatures”, a chemical or element that is associated with the existence of past or present life. According to a new study by an international team of researchers, one way to look for these signatures would be to examine material ejected from the surface of exoplanets during an impact event.

The study – titled “Searching for biosignatures in exoplanetary impact ejecta“, was published in the scientific journal Astrobiology and recently appeared online. It was led by Gianni Cataldi, a researcher from Stockholm University’s Astrobiology Center. He was joined by scientists from the LESIA-Observatoire de Paris, the Southwest Research Institute (SwRI), the Royal Institute of Technology (KTH), and the European Space Research and Technology Center (ESA/ESTEC).

Artist’s impression of what an asteroid hitting the Earth might look like. Credit: NASA/Don Davis.

As they indicate in their study, most efforts to characterize exoplanet biospheres have focused on the planets’ atmospheres. This consists of looking for evidence of gases that are associated with life here on Earth – e.g. carbon dioxide, nitrogen, etc. – as well as water. As Cataldi told Universe Today via email:

“We know from Earth that life can have a strong impact on the composition of the atmosphere. For example, all the oxygen in our atmosphere is of biological origin. Also, oxygen and methane are strongly out of chemical equilibrium because of the presence of life. Currently, it is not yet possible to study the atmospheric composition of Earth-like exoplanets, however, such a measurement is expected to become possible in the foreseeable future. Thus, atmospheric biosignatures are the most promising way to search for extraterrestrial life.”

However, Cataldi and his colleagues considered the possibility of characterizing a planet’s habitability by looking for signs of impacts and examining the ejecta. One of the benefits of this approach is that ejecta escapes lower gravity bodies, such as rocky planets and moons, with the greatest ease. The atmospheres of these types of bodies are also very difficult to characterize, so this method would allow for characterizations that would not otherwise be possible.

And as Cataldi indicated, it would also be complimentary to the atmospheric approach in a number of ways:

“First, the smaller the exoplanet, the more difficult it is to study its atmosphere. On the contrary, smaller exoplanets produce larger amounts of escaping ejecta because their surface gravity is lower, making ejecta from smaller exoplanet easier to detect. Second, when thinking about biosignatures in impact ejecta, we think primarily of certain minerals. This is because life can influence the mineralogy of a planet either indirectly (e.g. by changing the composition of the atmosphere and thus allowing new minerals to form) or directly (by producing minerals, e.g. skeletons). Impact ejecta would thus allow us to study a different sort of biosignature, complementary to atmospheric signatures.”

Another benefit to this method is the fact that it takes advantage of existing studies that have examined the impacts of collisions between astronomical objects. For instance, multiple studies have been conducted that have attempted to place constraints on the giant impact that is believed to have formed the Earth-Moon system 4.5 billion years ago (aka. the Giant Impact Hypothesis).

While such giant collisions are thought to have been common during the final stage of terrestrial planet formation (lasting for approximately 100 million years), the team focused on impacts of asteroidal or cometary bodies, which are believed to occur over the entire lifetime of an exoplanetary system. Relying on these studies, Cataldi and his colleagues were able to create models for exoplanet ejecta.

As Cataldi explained, they used the results from the impact cratering literature to estimate the amount of ejecta created. To estimate the signal strength of circumstellar dust disks created by the ejecta, they used the results from debris disk (i.e. extrasolar analogues of the Solar System’s Main Asteroid Belt) literature. In the end, the results proved rather interesting:

“We found that an impact of a 20 km diameter body produces enough dust to be detectable with current telescopes (for comparison, the size of the impactor that killed the dinosaurs 65 million years ago is though to be around 10 km). However, studying the composition of the ejected dust (e.g. search for biosignatures) is not in the reach of current telescopes. In other words, with current telescopes, we could confirm the presence of ejected dust, but not study its composition.”

Perspective view looking from an unnamed crater (bottom right) towards the Worcester Crater. The region sits at the mouth of Kasei Valles, where fierce floodwaters emptied into Chryse Planitia. Credit: ESA/DLR/FU Berlin

In short, studying material ejected from exoplanets is within our reach and the ability to study its composition someday will allow astronomers to be able to characterize the geology of an exoplanet – and thus place more accurate constraints on its potential habitability. At present, astronomers are forced to make educated guesses about a planet’s composition based on its apparent size and mass.

Unfortunately, a more detailed study that could determine the presence of biosignatures in ejecta is not currently possible, and will be very difficult for even next-generation telescopes like the James Webb Space Telescope (JWSB) or Darwin. In the meantime, the study of ejecta from exoplanets presents some very interesting possibilities when it comes to exoplanet studies and characterization. As Cataldi indicated:

“By studying the ejecta from an impact event, we could learn something about the geology and habitability of the exoplanet and potentially detect a biosphere. The method is the only way I know to access the subsurface of an exoplanet. In this sense, the impact can be seen as a drilling experiment provided by nature. Our study shows that dust produced in an impact event is in principle detectable, and future telescopes might be able to constrain the composition of the dust, and therefore the composition of the planet.”

In the coming decades, astronomers will be studying extra-solar planets with instruments of increasing sensitivity and power in the hopes of finding indications of life. Given time, searching for biosignatures in the debris around exoplanets created by asteroid impacts could be done in tandem with searchers for atmospheric biosignatures.

With these two methods combined, scientists will be able to say with greater certainty that distant planets are not only capable of supporting life, but are actively doing so!

Further Reading: Astrobiology, arXiv

Life on Europa Would be Protected by Just a Few Centimeters of Ice

Ever since the Galileo probe provided compelling evidence for the existence of a global ocean beneath the surface of Europa in the 1990s, scientists have wondered when we might be able to send another mission to this icy moon and search for possible signs of life. Most of these mission concepts call for an orbiter or lander than will study Europa’s surface, searching the icy sheet for signs of biosignatures turned up from the interior.

Unfortunately, Europa’s surface is constantly bombarded by radiation, which could alter or destroy material transported to the surface. Using data from the Galileo and Voyager 1 spacecraft, a team of scientists recently produced a map that shows how radiation varies across Europa’s surface. By following this map, future missions like NASA’s Europa Clipper will be able to find the spots where biosignatures are most likely to still exist.

As many missions have revealed by studying Europa’s surface, the moon experiences periodic exchanges between the interior and the surface. If there is life in its interior ocean, then biological material could theoretically be brought to the surface where it could be studied. Since radiation from Jupiter’s magnetic field would destroy this material, knowing where it is most intense, how deep it goes, and how it could affect the interior are all important questions.

Artist’s impression of water bubbling up from Europa’s interior ocean and breaching the surface ice. Credit: NASA/JPL-Caltech

As Tom Nordheim, a research scientist at NASA’s Jet Propulsion Laboratory, explained in a recent NASA press release:

“If we want to understand what’s going on at the surface of Europa and how that links to the ocean underneath, we need to understand the radiation. When we examine materials that have come up from the subsurface, what are we looking at? Does this tell us what is in the ocean, or is this what happened to the materials after they have been radiated?”

To address these question, Nordheim and his colleagues examined data from Galileo‘s flybys of Europa and electron measurements from NASA’s Voyager 1 spacecraft. After looking closely at the electrons blasting the moon’s surface, Nordheim and his team found that the radiation doses vary by location. The harshest radiation is concentrated in zones around the equator, and the radiation lessens closer to the poles.

The study which describes their findings recently appeared in the scientific journal Nature under the title “Preservation of potential biosignatures in the shallow subsurface of Europa“. The study was led by Nordheim and was co-authored by Kevin Hand (also with the JPL) and Chris Paranicas from the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland.

Artist’s concept of a Europa Clipper mission. Credit: NASA/JPL

“This is the first prediction of radiation levels at each point on Europa’s surface and is important information for future Europa missions,” said Paranicas. Now that scientists know where to find regions least altered by radiation, they will be able to designate areas of study for the Europa Clipper, a JPL-led mission that is expected to launch as early as 2022.

For the sake of their study, Nordheim and his team went beyond a conventional two-dimensional map to build 3D models that examined how far below the surface the radiation penetrates. To test how deep organic material would have to be buried in order to survive, Nordheim and his team tested the effect of radiation on amino acids (the basic building blocks for proteins) to figure out how Europa’s exposure to radiation would affect potential biosignatures.

The results indicate how deep scientists will need to dig or drill during a potential future Europa lander mission in order to find any biosignatures that might be preserved. In the highest-radiation zones around the equator, the depth at which biosignatures could be found ranged from 10 to 20 cm (4 to 8 inches). At the middle- and high-latitudes, closer to the poles, the depths decrease to about 1 cm (0.4 inches). As Hand indicated:

“The radiation that bombards Europa’s surface leaves a fingerprint. If we know what that fingerprint looks like, we can better understand the nature of any organics and possible biosignatures that might be detected with future missions, be they spacecraft that fly by or land on Europa.”

Artist’s impression of a water vapor plume on Europa. Credit: NASA/ESA/K. Retherford/SwRI

When the Europa Clipper mission reaches the Jovian system, the spacecraft will orbit Jupiter and conducting about 45 close flybys of Europa. It’s advanced suite of scientific instruments will include cameras, spectrometers, plasma and radar instruments which will investigate the composition of the moon’s surface, its ocean, and material that has been ejected from the surface.

“Europa Clipper’s mission team is examining possible orbit paths, and proposed routes pass over many regions of Europa that experience lower levels of radiation,” Hand said. “That’s good news for looking at potentially fresh ocean material that has not been heavily modified by the fingerprint of radiation.”

With this new radiation map, the mission team will be able to narrow the range of possible research sites. This, in turn, will increase the likelihood that the orbiter mission will be able to settle the decades-old mystery of whether or not there is life in the Jovian system.

Further Reading: NASA, Nature

Complex Organics Molecules are Bubbling up From Inside Enceladus

The Cassini orbiter revealed many fascinating things about the Saturn system before its mission ended in September of 2017. In addition to revealing much about Saturn’s rings and the surface and atmosphere of Titan (Saturn’s largest moon), it was also responsible for the discovery of water plumes coming from Enceladus‘ southern polar region. The discovery of these plumes triggered a widespread debate about the possible existence of life in the moon’s interior.

This was based in part on evidence that the plumes extended all the way to the moon’s core/mantle boundary and contained elements essential to life. Thanks to a new study led by researchers from of the University of Heidelberg, Germany, it has now been confirmed that the plumes contain complex organic molecules. This is the first time that complex organics have been detected on a body other than Earth, and bolsters the case for the moon supporting life.

The study, titled “Macromolecular organic compounds from the depths of Enceladus“, recently appeared in the journal Nature. The study was led by Frank Postberg and Nozair Khawaja of the Institute for Earth Sciences at the University of Heidelberg, and included members from the Leibniz Institute of Surface Modification (IOM), the Southwest Research Institute (SwRI), NASA’s Jet Propulsion Laboratory, and multiple universities.

The “tiger stripes” of Enceladus, as pictured by the Cassini space probe. Credit: NASA/JPL/ESA

The existence of a liquid water ocean in Enceladus’ interior has been the subject of scientific debate since 2005, when Cassini first observed plumes containing water vapor spewing from the moon’s south polar surface through cracks in the surface (nicknamed “Tiger Stripes”). According to measurements made by the Cassini-Huygens probe, these emissions are composed mostly of water vapor and contain molecular nitrogen, carbon dioxide, methane and other hydrocarbons.

The combined analysis of imaging, mass spectrometry, and magnetospheric data also indicated that the observed southern polar plumes emanate from pressurized subsurface chambers. This was confirmed by the Cassini mission in 2014 when the probe conducted gravity measurements that indicated the existence of a south polar subsurface ocean of liquid water with a thickness of around 10 km.

Shortly before the probe plunged into Saturn’s atmosphere, the probe also obtained data that indicated that the interior ocean has existed for some time. Thanks to previous readings that indicated the presence of hydrothermal activity in the interior and simulations that modeled the interior, scientists concluded that if the core were porous enough, this activity could have provided enough heat to maintain an interior ocean for billions of years.

However, all the previous studies of Cassini data were only able to identify simple organic compounds in the plume material, with molecular masses mostly below 50 atomic mass units. For the sake of their study, the team observed evidence of complex macromolecular organic material in the plumes’ icy grains that had masses above 200 atomic mass units.

Hydrothermal activity in Enceladus’ core and the rise of organic-rich bubbles. Credit and Copyright: ESA; F. Postberg et al (2018)

This constitutes the first-ever detection of complex organics on an extraterrestrial body. As Dr. Khawaja explained in a recent ESA press release:

“We found large molecular fragments that show structures typical for very complex organic molecules. These huge molecules contain a complex network often built from hundreds of atoms of carbon, hydrogen, oxygen and likely nitrogen that form ring-shaped and chain-like substructures.”

The molecules that were detected were the result of the ejected ice grains hitting the dust-analyzing instrument aboard Cassini at speeds of about 30,000 km/hour. However, the team believes that these were mere fragments of larger molecules contained beneath Enceladus’ icy surface. As they state in their study, the data suggests that there is a thin organic-rich film on top of the ocean.

These large molecules would be the result of by complex chemical processes, which could be those related to life. Alternately, they may be derived from primordial material similar to what has been found in some meteorites or (as the team suspects) that is generated by hydrothermal activity. As Dr. Postberg explained:

“In my opinion the fragments we found are of hydrothermal origin, having been processed inside the hydrothermally active core of Enceladus: in the high pressures and warm temperatures we expect there, it is possible that complex organic molecules can arise.”

Artist rendering showing an interior cross-section of the crust of Enceladus, which shows how hydrothermal activity may be causing the plumes of water at the moon’s surface. Credits: NASA-GSFC/SVS, NASA/JPL-Caltech/Southwest Research Institute

As noted, recent simulations have shown the moon could be generating enough heat through hydrothermal activity for its interior ocean to have existed for billions of years. This study follows up on that scenario by showing how organic material could be injected into the ocean by hydrothermal vents. This is similar to what happens on Earth, a process that scientists believe may have played a vital role in the origins of life on our planet.

On Earth, organic substances are able to accumulate on the walls of rising air bubbles created by hydrothermal vents, which then rise to the surface and are dispersed by sea spray and the bubbles bursting. Scientists believe a similar process is happening on Enceladus, where bubbles of gas rising through the ocean could be bringing organic materiel up from the core-mantle boundary to the icy surface.

When these bubbles burst at the surface, it helps disperse some of the organics which then become part of the salty spray coming through the tiger cracks. This spray then freezes into icy particles as it reaches space, sending organic material and ice throughout the Saturn System, where it has now been detected. If this study is correct, then another fundamental ingredient for life is present in Enceladus’ interior, making the case for life there that much stronger.

This is just the latest in a long-line of discoveries made by Cassini, many of which point to the potential existence of life on or in some of Saturn’s moons. In addition to confirming the first organic molecules in an “ocean world” of our Solar System, Cassini also found compelling evidence of a rich probiotic environment and organic chemistry on Titan.

In the future, multiple missions are expected to return to these moons to gather more evidence of potential life, picking up where the venerable Cassini left off. So long Cassini, and thanks for blazing a trail!

Further Reading: ESA, Nature

Could Cyanobacteria Help to Terraform Mars?

Billions of years ago, Earth’s atmosphere was much different than it is today. Whereas our current atmosphere is a delicate balance of nitrogen gas, oxygen and trace gases, the primordial atmosphere was the result of volcanic outgassing – composed primarily of carbon dioxide, methane, ammonia, and other harsh chemicals. In this respect, our planet’s ancient atmosphere has something in common with Mars’ current atmosphere.

For this reason, some researchers think that introducing photosynthetic bacteria, which helped covert Earth’s atmosphere to what it is today, could be used to terraform Mars someday. According to a new study by an international team of scientists, it appears that cyanobacteria can conduct photosynthesis in low-light conditions. The results of this study could have drastic implications for Mars, where low-light conditions are common.

The study, titled “Photochemistry beyond the red limit in chlorophyll f–containing photosystems“, appeared in the the journal Science. The study was led by Dennis J. Nürnberg of the Department of Life Sciences at Imperial College, London, and included members from the Research School of Chemistry, ANU, the Consiglio Nazionale delle Ricerche, Queen Mary University of London, and the Institut de Biologie Intégrative de la Cellule.

Cyanobacteria Spirulina Credit:

Cyanobacteria are some of the most ancient organisms on Earth, with fossil evidence indicating that they existed as early as the Archean Era (c.a 3.5 billion years ago). During this time, they played a vital role in converting the abundant CO² in the atmosphere into oxygen gas, which eventually gave rise to ozone (O³) that helped protect the planet from harmful solar radiation.

The photochemistry used by these microbes is similar to what plants and trees – which subsequently evolved – rely on today. The process comes down to red light, which plants absorb, while reflecting green lights thanks to their chlorophyll content. The darker the environment, the less energy plants are able to adsorb, and thus convert into chemical energy.

For the sake of their study, the team led by Nürnberg sought to investigate just how dark an environment can become before photosynthesis becomes impossible. Using a species of bacteria known as Chroococcidiopsis thermalis (C. thermalis), they exposed samples of cyanobacteria to low light to find out what the lowest wavelengths that they could absorb were.

Previous research has suggested that the lower limit for photochemistry to occur was a light wavelength of 700 nanometers – known as the “red limit”. However, the team found that C. thermalis continued to conduct photosynthesis at wavelengths of up to 750 nanometers. The key, according to the team, lies in the presence of previously undetected long-wavelength chlorophylls, which the researchers traced back to the C. thermalis genome.

The researchers traced the origin of these chlorophylls to the C. thermalis genome, which they located in a specific gene cluster that is common in many species of cyanobacteria. This suggests that the ability to surpass the red limit is actually quite common, which has numerous implications. For one, the findings indicate that the limits of photosynthesis are greater than previously thought.

On the other hand, these findings indicate that certain organisms can function using less fuel, which the researchers refer to as an “unprecedented low-energy photosystem”. To Krausz and his colleagues, this photosystem could be the first wave in an effort to terraform Mars. Along with efforts to thicken the atmosphere and warm the environment, the introduction of C. thermalis and terrestrial plants could slowly make Mars suitable for human habitation.

As Krausz explained in a recent interview with Cosmos:

“This might sound like science fiction, but space agencies and private companies around the world are actively trying to turn this aspiration into reality in the not-too-distant future. Photosynthesis could theoretically be harnessed with these types of organisms to create air for humans to breathe on Mars. Low-light adapted organisms, such as the cyanobacteria we’ve been studying, can grow under rocks and potentially survive the harsh conditions on the red planet.”

Artist’s concept of a Martian astronaut standing outside the Mars One habitat. Credit: Bryan Versteeg/Mars One

In this respect, Krausz and his colleagues are joined by groups like the CyanoKnights – a team of students and volunteer scientists from the University of Applied Science and the Technical University in Darmstadt, Germany. Much like Krausz’s team, the CyanoKnights that want to seed Mars with cyanobacteria in order to trigger an ecological transformation, thus paving the way for colonization.

This idea was submitted as part of the Mars One University Competition, which took place in the summer of 2014. What’s more, there have been recent research findings that indicate that organisms similar to cyanobacteria may already exist on other planets. If this most recent study is correct, it means that such organisms could survive in low-light conditions, which means astronomers could expand their search for potential life to other locations in the Universe.

From offering humans the means to conduct terraforming under more restrictive conditions to assisting in the search for extra-terrestrial life, this research could have some drastic implications for our understanding of life in the Universe, and how to expand our place in it.

Further Reading: Cosmos, Science

Could There Be Life in the Cloudtops of Venus?

In the search for life beyond Earth, scientists have turned up some very interesting possibilities and clues. On Mars, there are currently eight functioning robotic missions on the surface of or in orbit investigating the possibility of past (and possibly present) microbial life. Multiple missions are also being planned to explore moons like Titan, Europa, and Enceladus for signs of methanogenic or extreme life.

But what about Earth’s closest neighboring planet, Venus? While conditions on its surface are far too hostile for life as we know it there are those who think it could exist in its atmosphere. In a new study, a team of international researchers addressed the possibility that microbial life could be found in Venus’ cloud tops. This study could answer an enduring mystery about Venus’ atmosphere and lead to future missions to Earth’s “Sister Planet”.

The study, titled “Venus’ Spectral Signatures and the Potential for Life in the Clouds“, recently appeared in the journal Astrobiology. The study was led by Sanjay Limaye of the University of Wisconsin-Madison’s Space Science and Engineering Center and included members from NASA’s Ames Research Center, NASA’s Jet Propulsion Laboratory, California State Polytechnic University, the Birbal Sahni Institute of Palaeosciences, and the University of Zielona Góra.

Artist’s impression of the surface of Venus, showing its lightning storms and a volcano in the distance. Credit and ©: European Space Agency/J. Whatmore

For the sake of their study, the team considered the presence of UV contrasts in Venus’ upper atmosphere. These dark patches have been a mystery since they were first observered nearly a century ago by ground-based telescopes.  Since then, scientists have learned that they are made up of concentrated sulfuric acid and other unknown light-absorbing particles, which the team argues could be microbial life.

As Limaye indicated in a recent University of Wisconsin-Madison press statement:

“Venus shows some episodic dark, sulfuric rich patches, with contrasts up to 30 – 40 percent in the ultraviolet, and muted in longer wavelengths. These patches persist for days, changing their shape and contrasts continuously and appear to be scale dependent.”

To illustrate the possibility that these streaks are the result of microbial life, the team considered whether or not extreme bacteria could survive in Venus’ cloud tops. For instance, the lower cloud tops of Venus (47.5 to 50.5 km above the surface) are known to have moderate temperature conditions (~60 °C; 140 °F) and pressure conditions that are similar to that of Earth at sea level (101.325 kPa).

This is far more hospitable than conditions on the surface, where temperatures reach 737 K (462 C; 860 F) and atmospheric pressure is 9200 kPa (92 times that of Earth at sea level). In addition, they considered how on Earth, bacteria has been found at altitudes as high as 41 km (25 mi). On top of that, there are many cases where extreme bacteria here on Earth that could survive in an acidic environment.

A composite image of the planet Venus as seen by the Japanese probe Akatsuki. The clouds of Venus could have environmental conditions conducive to microbial life. Credit: JAXA/Institute of Space and Astronautical Science

As Rakesh Mogul, a professor of biological chemistry at California State Polytechnic University and a co-author on the study, indicated, “On Earth, we know that life can thrive in very acidic conditions, can feed on carbon dioxide, and produce sulfuric acid.” This is consistent with the presence of micron-sized sulfuric acid aerosols in Venus upper atmosphere, which could be a metabolic by-product.

In addition, the team also noted that according to some models, Venus had a habitable climate with liquid water on its surface for as long as two billion years – which is much longer than what is believed to have occurred on Mars. In short, they speculate that life could have evolved on the surface of Venus and been swept up into the atmosphere, where it survived as the planet experienced its runaway greenhouse effect.

This study expands on a proposal originally made by Harold Morowitz and famed astronomer Carl Sagan in 1967 and which was investigated by a series of probes sent to Venus between 1962 and 1978. While these missions indicated that surface conditions on Venus ruled out the possibility of life, they also noted that conditions in the lower and middle portions of Venus’ atmosphere – 40 to 60 km (25 – 27 mi) altitude – did not preclude the possibility of microbial life.

For years, Limaye has been revisiting the idea of exploring Venus’ atmosphere for signs of life. The inspiration came in part from a chance meeting at a teachers workshop with Grzegorz Slowik – from the University of Zielona Góra in Poland and a co-author on the study – who told him of how bacteria on Earth have light-absorbing properties similar to the particles that make up the dark patches observed in Venus’ clouds.

Aircraft like the Venus Atmospheric Maneuverable Platform (VAMP) could explore the cloud tops of Venus for possible signs of life. Credit: Northrop Grumman Corp

While no probe that has sampled Venus’ atmosphere has been capable of distinguishing between organic and inorganic particles, the ones that make up Venus’ dark patches do have comparable dimensions to some bacteria on Earth. According to Limaye and Mogul, these patches could therefore be similar to algae blooms on Earth, consisting of bacteria that metabolizes the carbon dioxide in Venus’ atmosphere and produces sulfuric acid aerosols.

In the coming years, Venus’ atmosphere could be explored for signs of microbial life by a lighter than air aircraft. One possibility is the Venus Aerial Mobil Platform (VAMP), a concept currently being researched by Northrop Grumman (shown above). Much like lighter-than-air concepts being developed to explore Titan, this vehicle would float and fly around in Venus’ atmosphere and search the cloud tops for biosignatures.

Another possibility is NASA’s possible participation in the Russian Venera-D mission, which is currently scheduled to explore Venus during the late 2020s. This mission would consist of a Russian orbiter and lander to explore Venus’ atmosphere and surface while NASA would contribute a surface station and maneuverable aerial platform.

Another mystery that such a mission could explore, which has a direct bearing on whether or not life may still exist on Venus, is when Venus’ liquid water evaporated. In the last billion years or so, the extensive lava flows that cover the surface have either destroyed or covered up evidence of the planet’s early history. By sampling Venus’ clouds, scientists could determine when all of the planet’s liquid water disappeared, triggering the runaway greenhouse effect that turned it into a hellish landscape.

NASA is currently investigating other concepts to explore Venus’ hostile surface and atmosphere, including an analog robot and a lander that would use a Sterling engine to turn Venus’ atmosphere into a source of power. And with enough time and resources, we might even begin contemplating building floating cities in Venus atmosphere, complete with research facilities.

Further Reading: Space Science and Engineering Center, Astrobiology

Updates on ‘Oumuamua. Maybe it’s a Comet, Actually. Oh, and no Word From Aliens.

On October 19th, 2017, the Panoramic Survey Telescope and Rapid Response System-1 (Pan-STARRS-1) in Hawaii announced the first-ever detection of an interstellar object, named 1I/2017 U1 (aka. ‘Oumuamua). After originally hypothesizing that it was a comet, observations performed by the European Southern Observatory (ESO) and other astronomers indicated that it was likely a strange-looking asteroid measuring about 400 meters (1312 ft) long.

Since that time, multiple surveys have been conducted to determine the true nature of this asteroid, which have included studies of its composition to Breakthrough Listen‘s proposal to listen to it for signs of radio transmissions. And according to the latest findings, it seems that ‘Oumuamua may actually be more icy than previously thought (thus indicated that it is a comet) and is not an alien spacecraft as some had hoped.

The first set of findings were presented in a study that was recently published in the scientific journal Nature, titled “Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua“. The study was led by Alan Fitzsimmons of Queen’s University Belfast, and included members from The Open University in Milton Keynes, the Institute for Astronomy (IfA) at the University of Hawaii, and the European Southern Observatory (ESO).

‘Oumuamua, as imaged by the William Herschel Telescope on October 29th, 2017. Credit: Queen’s University Belfast/William Herschel Telescope

As they indicate in their study, the team relied on information from the ESO’s Very Large Telescope in Chile and the William Herschel Telescope in La Palma. Using these instruments, they were able to obtain spectra from sunlight reflected off of ‘Oumuamua within 48 hours of the discovery. This revealed vital information about the composition of the object, and pointed towards it being icy rather than rocky. As Fitzsimmons explained in op-ed piece in The Conversation:

“Our data revealed its surface was red in visible light but appeared more neutral or grey in infra-red light. Previous laboratory experiments have shown this is the kind of reading you’d expect from a surface made of comet ices and dust that had been exposed to interstellar space for millions or billions of years. High-energy particles called cosmic rays dry out the surface by removing the ices. These particles also drive chemical reactions in the remaining material to form a crust of chemically organic (carbon-based) compounds.”

These findings not only addressed a long-standing question about ‘Oumuamua true nature, it also addresses the mystery of why the object did not experience outgassing as it neared our Sun. Typically, comets experience sublimation as they get closer to a star, which results in the formation of a gaseous envelope (aka. “halo”). The presence of an outer layer of carbon-rich material would explain why this didn’t happen ‘Oumuamua.

They further conclude that the red layer of material could be the result of its interstellar journey. As Fitzsommons explained, “another study using the Gemini North telescope in Hawaii showed its color is similar to some ‘trans-Neptunian objects’ orbiting in the outskirts of our solar system, whose surfaces may have been similarly transformed.” This red coloring is due to the presence of tholins, which form when organic molecules like methane are exposed to ultra-violet radiation.

Similarly, another enduring mystery about this object was resolved thanks to the recent efforts of Breakthrough Listen. As part of Breakthrough Initiatives’ attempts to explore the Universe and search for signs of Extra-Terrestrial Intelligence (ETI), this project recently conducted a survey of ‘Oumuamua to determine if there were any signs of radio communications coming from it.

While previous studies had all indicated that the object was natural in origin, this survey was more about validating the sophisticated instruments that Listen relies upon. The observation campaign began on Wednesday, December 13th, at 3:00 pm EST (12:00 PST) using the Robert C. Byrd Greenbank Radio Telescope, the world’s premiere single-dish radio telescope located in West Virginia.

The observations period was divided into four “epochs” (based on the object’s rotational period), the first of which ran from 3:45 pm to 9:45 pm ET (12:45 pm to 6:45 pm PST) on Dec 13th, and last for ten hours. During this time, the observation team monitored ‘Oumuamua across four radio bands, ranging from the 1 to 12 GHz bands. In addition to calibrating the instrument, the survey accumulated 90 terabytes of raw data over after observing ‘Oumuamua itself for two hours.

The initial results and data were released last week (Dec. 13th) and are available through the Breakthrough Listen archive. As Andrew Siemion – the Director of Berkeley SETI Research Center who took part in the survey – indicated in a Breakthrough Initiatives press release:

“It is great to see data pouring in from observations of this novel and interesting source. Our team is excited to see what additional observations and analyses will reveal”.

So far, no signals have been detected, but the analysis is far from complete. This is being conducted by Listen’s “turboSETI” pipeline, which combs the data for narrow bandwidth signals that are drifting in frequency. This consists of filtering out interference signals from human sources, then matching the rate at which signals drift relative to the expected drift caused by ‘Oumuamua’s own motion.

In so doing, the software attempts to identify any signals that might be coming from ‘Oumuamua itself. So far, data from the S-band receiver (frequencies ranging from 1.7 to 2.6 GHz) has been processed, and analysis of the remaining three bands – which corresponds to receivers L, X, and C is ongoing. But at the moment, the results seem to indicate that ‘Oumuamua is indeed a natural object – and an interstellar comet to boot.

This is certainly bad news for those who were hoping that ‘Oumuamua might be a massive cylinder-shaped generation ship or some alien space probe sent to communicate with the whales! I guess first contact – and hence, proof we are NOT alone in the Universe – is something we’ll have to wait a little longer for.

Further Reading: The Conversation, Nature, Breakthrough Initiatives