Europe’s Plans to Visit the Moon in 2018

The European Space Agency is aiming for the Moon with their Lunar Lander mission, anticipated to arrive on the lunar surface in 2018. Although ESA successfully put a lander on Titan with the Huygens probe in 2005, this will be the first European spacecraft to visit the surface of Earth’s Moon.

Although Lunar Lander will be an unmanned robotic explorer, the mission will be a forerunner to future human exploration of the Moon as well as Mars. Lunar Lander will use advanced technologies for autonomous landing and will be able to determine the best location for touchdown on its own, utilizing lasers to avoid obstacles on the Moon’s surface.

With no GPS on the Moon, Lunar Lander will navigate by digitally imaging the surface on the fly. Landing will be accomplished via thrusters, which were successfully tested earlier this year at a test chamber in Germany.

Lunar Lander’s destination will be the Moon’s south pole, where no exploration missions have ever landed. Once on the lunar surface, the Lander will investigate Moon dust using a robotic arm and a suite of onboard diagnostic instruments, sending data and images back to scientists on Earth for further study.

Watch a video of the Lunar Lander mission below, from launch to landing.

Read more about Lunar Lander on the ESA site here.

Images and video: ESA

The Audacity to Dream

Making its debut at the TEDxISU (International Space University) event on July 6, the video above is an inspirational call-to-arms for anyone who’s ever looked to the stars and dreamed of a day when the sky was, in fact, not the limit. From Sputnik to Space Station, from Vostok to Virgin Galactic, the video reminds us of the spirit of adventure that unites us, regardless of time or place or politics. Dreaming, after all, is universal.

Check it out.

“A planet is the cradle of mind, but one cannot live in a cradle forever.”
– Konstantin Tsiolkovsky

The Moon Is Toxic

As our closest neighbor in space, a time-capsule of planetary evolution and the only world outside of Earth that humans have stepped foot on, the Moon is an obvious and ever-present location for future exploration by humans. The research that can be done on the Moon — as well as from it — will be invaluable to science. But the only times humans have visited the Moon were during quick, dusty  jaunts on its surface, lasting only 2-3 days each before departing. Long-term human exposure to the lunar environment has never been studied in depth, and it’s quite possible that — in addition to the many inherent dangers of living and working in space — the Moon itself may be toxic to humans.

An international team of researchers has attempted to quantify the health dangers of the Moon — or at least its dust-filled regolith. In a paper titled “Toxicity of Lunar Dust” (D. Linnarsson et al.) the health hazards of the Moon’s fine, powdery dust — which plagued Apollo astronauts both in and out of their suits — are investigated in detail (or as best as they can be without actually being on the Moon with the ability to collect pristine samples.)

Within their research the team, which included physiologists, pharmacologists, radiologists and toxicologists from 5 countries, investigated some of the following potential health hazards of lunar dust:

Inhalation. By far the most harmful effects of lunar dust would come from inhalation of the particulates. Even though lunar explorers would be wearing protective gear, suit-bound dust can easily make its way back into living and working areas — as Apollo astronauts quickly discovered. Once inside the lungs the super-fine, sharp-edged lunar dust could cause a slew of health issues, affecting the respiratory and cardiovascular system and causing anything from airway inflammation to increased risks of various cancers. Like pollutants encountered on Earth, such as asbestos and volcanic ash, lunar dust particles are small enough to penetrate deep within lung tissues, and may be made even more dangerous by their long-term exposure to proton and UV radiation. In addition, the research suggests a microgravity environment may only serve to ease the transportation of dust particles throughout the lungs.

Skin Damage. Lunar regolith has been found to be very sharp-edged, mainly because it hasn’t undergone the same kind of erosive processes that soil on Earth has. Lunar soil particles are sometimes even coated in a glassy shell, the result of rock vaporization by meteorite impacts. Even the finer particles of dust — which constitute about 20% of returned lunar soil samples — are rather sharp, and as such pose a risk of skin irritation in instances of exposure. Of particular note by the research team is abrasive damage to the outer layer of skin at sites of “anatomical prominence”, i.e., fingers, knuckles, elbows, knees, etc.

“The dust was so abrasive that it actually wore through three layers of Kevlar-like material on Jack [Schmitt’s] boot.”

– Professor Larry Taylor, Director of the Planetary Geosciences Institute, University of Tennessee (2008)

Eye Damage. Needless to say, if particles can pose abrasive damage to human skin, similar danger to the eyes is also a concern. Whether lunar dust makes its way into the eye via airborne movement (again, much more of a concern in microgravity) or through direct contact from fingers or another dust-coated object, the result is the same: danger of abrasion. Having a scratched cornea is no fun, but if you’re busy working on the Moon at the time it could turn into a real emergency.

While the research behind the paper used data about airborne pollutants known to exist on Earth and simulated lunar dust particles, actual lunar dust is harder to test. The samples returned by the Apollo missions have not been kept in a true lunar-like environment — being removed from exposure to radiation and not stored in a vacuum, for instance — and as such may not accurately exhibit the properties of actual dust as it would be encountered on the Moon. The researchers conclude that only studies conducted on-site will fill the gaps in our knowledge of lunar dust toxicity. Still, the research is a step in the right direction as it looks to ensure a safe environment for future explorers on the Moon, our familiar — yet still alien — satellite world.

Read the team’s paper in full here.

“The Apollo astronauts reported undesirable effects affecting the skin, eyes and airways that could be related to exposure to the dust that had adhered to their space suits during their extravehicular activities and was subsequently brought into their spacecraft.”

– Dag Linnarsson, lead author, Toxicity of Lunar Dust

Top image: Apollo 16 astronaut Charlie Duke with a dust-coated LRV. Side image: a dusty Gene Cernan in the LM at the end of an Apollo 17 EVA. (NASA/JSC)

Humans on Mars by 2023?

Artist concept of the Mars One lander, a variant on the SpaceX Dragon. Credit: Mars One

Reality TV goes to Mars! Dutch entrepreneur Bas Lansdorp is leading a group visionaries and businesspeople who want to send four humans to Mars by 2023, and they say they can achieve their goal at an estimated cost of $6 billion USD. How can they do it? By building it into a global media spectacle. And oh, by the way, this will be a one-way trip.

“Who would be able to look away from an adventure such as this one?” asks Lansdorp in his bio on the Mars One website. “Who wouldn’t be compelled to watch, talk about, get involved in the biggest undertaking mankind has ever made? The entire world will be able to follow this giant leap from the start; from the very first astronaut selections to the established, independent village years later. The media focus that comes with the public’s attention opens pathways to sponsors and investors.”

As far as the one-way mission (a concept that Universe Today has written about extensively) the Mars One website notes, “this is no way excludes the possibility of a return flight at some point in the future.”

[/caption]

The difference between this mission and the one proposed by Jim McLane back in 2008 is that McLane wanted to send just one person to Mars.

However, the Mars One group says that once the first trip is successful and Mars becomes developed, it will be “much easier to build the returning rocket there.”

In a Q&A on reddit, Lansdorp said the biggest challenge will be financing.

“We have estimated, and discussed with our suppliers that it will cost about 6 billion US$ to get the first crew of four people to Mars. We plan to organize the biggest media event ever around our mission. When we launch people to Mars and when they land, the whole world will watch. After that a lot of people will be very interested to see how ‘our people on Mars’ are doing.”

But the big challenge is that the biggest expenditures will be building the equipment before they send people to Mars. “This is why we are building a very strong technical case now. If we can convince sponsors and investors that this will really happen, then we believe that we can convince them to help us finance it,” Lansdorp said.

As far as technologies, Mars One expects to use a SpaceX Falcon 9 Heavy as a launch vehicle, a transit vehicle/space habitat built by Thales Alenia Space, a variant on the SpaceX Dragon as the lander, an inflatable habitat built by ILC Dover, a rover vehicle by MDA Space Missions, and Mars spacesuits made by Paragon.

The project website says “no new technologies” will be needed, but does any space agency or company really have a good handle on providing providing ample air, oxygen, energy, food and water for extended (lifetimes?) periods of time? Instead, the website provides more details on FAQ’s like, What will the astronauts do on Mars? Why should we go to Mars? Is it safe to live on Mars? How does the Mars base communicate with Earth? And the Mars One team emphasizes that this can be done with current technology. However, no one really knows how to land large payloads on Mars yet, so at least some development will be required there.

Who will go? Later this year they will begin to take applications and eventually 40 people will take part in a rigid, decade-long training program (which sounds very expensive) where the ‘contestants” will essentially be voted off the island to get to the final four astronauts. The selection and training process will be broadcast via television and online to public, with viewers voting on the final selected four.

It’s an intriguing proposition, but one filled with technological hurdles. I’ve just finished reading Ben Bova’s “Mars,” so I’m also thinking the Mars One folks will need to be on the lookout for micrometeorite swarms.

Mars One website.

Space Exploration By Robot Swarm

"Hopper" rover/spacecraft concept by Stanford University's Marco Pavone

[/caption]

With all there’s yet to learn about our solar system from the many smaller worlds that reside within it — asteroids, protoplanets and small moons — one researcher from Stanford University is suggesting we unleash a swarm of rover/spacecraft hybrids that can explore en masse.

Marco Pavone, an assistant professor of aeronautics and astronautics at Stanford University and research affiliate at JPL, has been developing a concept under NASA’s Innovative Advanced Concepts (NIAC) Program that would see small spherical robots deployed to small worlds, such as Mars’ moons Phobos and Deimos, where they would take advantage of low gravity to explore — literally —  in leaps and bounds.

Due to the proposed low costs of such a mission, multiple spacecraft could be scattered across a world, increasing the area that could be covered as well as allowing for varied surfaces to be explored. Also, were one spacecraft to fail the entire mission wouldn’t be compromised.

The concept is similar to what NASA has done in the past with the Mars rovers, except multiplied in the number of spacecraft (and reduced in cost.)

The robots would be deployed from a “mother” spacecraft and spring into action upon landing, tumbling, hopping and vaulting their way across low-mass worlds.

In addition to providing our first views from the surfaces of such worlds, Pavone’s hybrid rovers could also help prepare for future, more in-depth exploration.

“The systematic exploration of small bodies would help unravel the origin of the solar system and its early evolution, as well as assess their astrobiological relevance,” Pavone explains. “In addition, we can evaluate the resource potential of small bodies in view of future human missions beyond Earth.”

Read more from NASA’s Office of the Chief Technologist here.

Photo courtesy of Marco Pavone

Video: NASA’s Pursuit of Light and Big Science

The folks at NASA Goddard’s multimedia division have outdone themselves this time on a new video compilation which, really, shows how NASA dreams big science. Its asks the big questions of why we really explore and how important these explorations can be. It shows views of the Earth, the planets, the Sun, and the endless universe beyond. The video description says it best: “Come for the cool, stay for the music, take away a sense of wonder to share. It’s six minutes from Earth to forever, and you can see it here!”

And what will be lost if NASA is allowed to just fade away through neglect? If you live in the US, contact your Congress members and encourage them to support NASA. Currently NASA’s budget isn’t big enough to even show up as a line on a pie chart, and represents 0.46% of the US budget — less than half a penny for every dollar spent in the US, and has been relatively unchanged for 25 years.

Here’s a graph of what NASA’s percentage of the budget has been like over time:

“NASA contributes to society in massively huge ways in terms of technological, economical, and inspirational progress,” says the website Penny4NASA. “The progress that we have seen in the last 40 years comes largely from the world’s extremely talented scientists and engineers. Now, talk to most any scientist and/or engineer of the last 40 years, and we are willing to bet that they were drawn into their chosen field by something NASA related.”

Check out Penny4NASA for more information and to sign a petition to ask for more funding for NASA.

Europa Analog Deep-Sea Vents Discovered in the Caribbean

A team recovers the hybrid robotic vehicle Nereus aboard the research vessel Cape Hatteras during a partially NASA-funded expedition to the Mid-Cayman Rise in October 2009. A search for new hydrothermal vent sites along the 110-kilometer-long ridge, the expedition featured the first use of Nereus in "autonomous," or free-swimming, mode. Image credit: Woods Hole Oceanographic Institution

[/caption]

White sand, blue water, sunny skies, pina coladas. When you think of “extreme environments” I doubt the Caribbean is high on your list. But a team of scientists from Woods Hole Oceanographic institute and NASA’s Jet Propulsion Laboratory, exploring the 68-mile-long Mid-Cayman rise deep beneath the surface of the Caribbean, have discovered the deepest known hydrothermal vent in the world, along with two other distinct types of vents.

The mid-Cayman rise is a much smaller version of the mid-ocean ridge system, a chain of submarine mountains that encircles the globe. These ridges form in locations where tectonic plates are pulling apart, allowing mantle rocks to melt and emerge at the surface as lava. Seawater, percolating through the hot rocks at these spreading centers, is superheated and emerges at vents, bearing a rich bounty of dissolved nutrients to support thriving ecosystems that can live without any sunlight.

“This was probably the highest-risk expedition I have ever undertaken,” said chief scientist Chris German, a Woods Hole Oceanographic Institution geochemist who has pioneered the use of autonomous underwater vehicles to search for hydrothermal vent sites. “We know hydrothermal vents appear along ridges approximately every 100 kilometers [62 miles]. But this ridge crest is only 100 kilometers long, so we should only have expected to find evidence for one site at most. So finding evidence for three sites was quite unexpected – but then finding out that our data indicated that each site represents a different style of venting – one of every kind known, all in pretty much the same place – was extraordinarily cool.”

Towering carbonate formations at the Lost City hydrothermal field. Image Credit: Kelley, U of Washington, IFE, URI-IAO, NOAA

In addition to the deepest hydrothermal vent yet discovered, at a depth of 5,000 meters (16,400 feet), the team also found a shallower low-temperature vent. Only one other vent of this type has been discovered: the famous “Lost City” vent in the Atlantic.

“We were particularly excited to find compelling evidence for high-temperature venting at almost 5,000 meters depth,” said Julie Huber, a scientist in the Josephine Bay Paul Center at the Marine Biological Laboratory in Woods Hole. “We have absolutely zero microbial data from high-temperature vents at this depth.”

The ecosystems encrusting the deep sea vents on the mid-Cayman rise provide valuable clues to how life could arise and thrive elsewhere in the solar system. “Most life on Earth is sustained by food chains that begin with sunlight as their energy source. That’s not an option for possible life deep in the ocean of Jupiter’s icy moon Europa,” said JPL co-author Max Coleman.

With an airless sky, intense radiation, icy crust, and no pina coladas, the surface of Europa is about as different from the Caribbean as you can get. But deep on the sea floor, they may be remarkably similar.

“Organisms around the deep vents get energy from the chemicals in hydrothermal fluid, a scenario we think is similar to the seafloor of Europa,” Coleman said. “This work will help us understand what we might find when we search for life there.”

An artist's depiction of a future Europa mission. Image credit: NASA

Mars Explorers May Use AI to Become ‘Cyborg Astrobiologists’

Future Mars astronauts. Image Credit: Patrick McGuire

Ever heard of a ‘Cyborg Astrobiologist’? Probably not. But I bet you’ll want to be one after learning that future exploration of Mars (and other planets, for that matter) may employ the use of artificial intelligence integrated into spacesuits to enhance the ability of astronauts in taking scientific data while exploring. The AI assistance could help future astronauts exploring planets to recognize differences in their surroundings as being due to the presence of life. Does this sound like something from 50 years from now? Well, a prototype model has already been tested, and has shown the principle behind this idea to be sound.

University of Chicago geoscientist Patrick McGuire and his team have developed the basic systems needed for such a spacesuit, using mostly off-the shelf technology. The system uses a Hopfield neural network to analyze data taken in by a either a camera phone or a microscope. The AI system employs a ‘novelty detection algorithm’ which analyzes images from either imaging device, and is able to identify features in images that are out of place.

The Hopfield system compares patterns against ones it has already seen, and learns from this process to correctly identify novel patterns that could be of interest. The full prototype spacesuit has a wearable computer that houses the AI system, which uses Bluetooth to receive data from a cell phone camera or is connected to a USB digital microscope.

The system was tested at the Mars Desert Research Station (MDRS) in the San Rafael Swell of Utah, which is maintained by the Mars Society. The MDRS is a semi-arid desert with “greenish, grey or light gray mudstone,
limestone, siltstone and sandstone, partially inter-bedded by white sandstone layers”. For the last two weeks of February 2009, two members of McGuire’s team tested the wearable technology, which was able to successfully learn to identify patches of lichen from a background of rock, and identify different color patterns that signified different rock formations.

Another test, conducted in September of 2005 at Rivas Vaciamadrid in Spain, utilized a USB digital microscope to image rocks with lichen on them. As you can see in the image below, the AI system was able to identify as uncommon the spores of the lichen, which are about 1mm in diameter.The Hopfield AI system was able to successfully identify lichen spores imaged by a digital microscope as a novel feature on rock formations in Rivas Vaciamadrid, Spain. Image Credit: Patrick McGuire arXiv:0910.5454

There are still some bugs to be worked out, though, as the system detected cast shadows in rough terrain our low standing Sun as novel features, the researchers wrote in their paper, The Cyborg Astrobiologist: Testing a Novelty-Detection Algorithm on Two Mobile Exploration Systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah, available on Arxiv. The researchers also tested a head-mounted digital microscope display, but instead opted for a tripod due to the blurriness associated with the head movement of the researcher wearing the suit.

Though it may be a while until there are any Martian astronauts utilizing such a system – let alone Martian astronauts with the title of ‘Cyborg Astrobiologist’ – the combination of the AI with imaging systems could start to prove very useful on future orbital surveyors of Mars. Additionally, these systems could be used to collect and analyze data outside of the visible light spectrum, which could be incredibly useful for both robotic and human explorers.

Source: Physorg, Arxiv

Amazing Zoomable Poster on 50 Years of Space Exploration

Art by Sean McNaughton, National Geographics Staff; Sameul Velasco, [email protected] infographics. Sources: NASA; Chris Gamble. Sund, asteroid and comet images: NASA/JPL

[/caption]
National Geographic has put together a really nice zoomable poster on the history of robotic space exploration. It looks a little psychedelic from a distance, but zoom right in and follow the different missions to the various locations in our solar system, and see where the missions currently underway — like New Horizons, on its way to Pluto, and the venerable Voyagers that we hear from occasionally– are presently located. Click on the image to go to National Geographic’s Map of the Day page. Enjoy!

Exploration of Mercury

The MESSENGER spacecraft at Mercury (NASA)

[/caption]
As one of the planets visible with the unaided eye, Mercury has been known before recorded history. But until the development of the telescope, the exploration of the Mercury was only unaided eye observations. Early cultures like the Mayans and ancient Greeks were diligent astronomers, and calculated the motions and positions of Mercury with tremendous accuracy.

But the exploration of Mercury really began with the invention of the telescope. Galileo Galilei was the first to turn his telescope on the 1st planet, seeing nothing more than a small disk. Galileo’s telescope wasn’t powerful enough to see that Mercury has phases, like the Moon and Venus. In 1631, Pierre Gassendi made the first observations of Mercury’s transit across the surface of the Sun, and further observations by Giovanni Zupi revealed its phases. This helped astronomers to conclude the Mercury orbited the Sun, and not the Earth.

Because Mercury is so small, and located so close to the Sun, astronomers weren’t able image features on its surface with any accuracy. It wasn’t until the 1960s, when Soviet scientists bounced radio signals off the surface of Mercury that astronomers got any sense of what its surface was like. These radio reflections also helped astronomers discover that Mercury’s day length is 59 days; almost as long as its year of 88 days.

But the best Mercury exploration happened when NASA’s Mariner 10 spacecraft first flew past Mercury in 1974. It revealed that Mercury’s surface is pockmarked with craters like the Earth’s moon. And like the Moon it has flat regions filled in with lava flows. After two additional flybys Mariner 10 ended up mapping only 45% of Mercury’s surface.

The next mission to explore Mercury was NASA’s MESSENGER spacecraft, launched on August 3, 2004. It made its first Mercury flyby on January 14, 2008, mapping more of Mercury’s surface. MESSENGER will eventually go into orbit around Mercury, mapping its surface in great detail and answering many unknown questions about Mercury and its history.

We have written many stories about Mercury here on Universe Today. Here’s an article about a the discovery that Mercury’s core is liquid. And how Mercury is actually less like the Moon than previously believed.

Want more information on Mercury? Here’s a link to NASA’s MESSENGER Misson Page, and here’s NASA’s Solar System Exploration Guide to Mercury.

We have also recorded a whole episode of Astronomy Cast that’s just about planet Mercury. Listen to it here, Episode 49: Mercury.

References:
NASA Solar System Exploration: Missions to Mercury
NASA: Planetary Science