The First Images Are In from Rosetta’s Valentine’s Day Comet Flyby

On Saturday, Feb. 14, the Rosetta spacecraft swooped low over the surface of comet 67P/C-G in the first dedicated close pass of its mission, coming within a scant 6 km (3.7 miles) at 12:41 UTC. The image above is a mosaic of four individual NavCam images acquired just shortly afterwards, when Rosetta was about 8.9 km from the comet.

The 45m "Cheops" boulder on comet 67P/C-G (ESA/Rosetta/Navcam)
The 45m “Cheops” boulder on comet 67P/C-G (ESA/Rosetta/Navcam)

The view above looks across much of the Imhotep region along the flat bottom of comet 67P’s larger lobe. (See a map of 67P’s named regions here.) At the top is the flat “plain” where the Cheops boulder cluster can be seen – the largest of which is 45 meters (148 feet) across.

Read more: Rosetta Gets a Peek at Comet 67P’s Underside

The zero phase angle of sunlight during the pass made for fairly even illumination across the comet’s surface.

The image scale on the full mosaic is 0.76 m/pixel and the entire view encompasses a 1.35 × 1.37 km-wide area.

Other NavCam images acquired before and after the pass have been assembled into mosaics – check those out below:

Four-image mosaic made from NavCam images acquired on Feb. 14, 2015 at a distance of 35 km. Credits: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0.
Four-image mosaic made from NavCam images acquired on Feb. 14, 2015 at a distance of 35 km. Credits: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0.
Four-image mosaic made from NavCam images acquired on Feb. 14, 2015 at a distance of 12.6 km. Credits: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0.
Four-image mosaic made from NavCam images acquired on Feb. 14, 2015 at a distance of 12.6 km. Credits: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0.
Four-image mosaic made from NavCam images acquired on Feb. 14, 2015 at 19:42 UTC at a distance of 31.6 km. Credits: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0.
Four-image mosaic made from NavCam images acquired on Feb. 14, 2015 at 19:42 UTC at a distance of 31.6 km. Credits: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0.

In addition to NavCam images of 67P, Rosetta also acquired high-resolution OSIRIS images of the comet and gathered scientific data about its coma environment during the flyby. These data will be downlinked and processed over the next week or so.

Flybys will be regular parts of Rosetta’s operations over the course of 2015, but due to the comet’s increasing activity none will bring the spacecraft as close as this particular pass.

Rosetta is now moving out to a distance of about 250 km (155 miles) from 67P. Watch a video below of how the Feb. 14 flyby was planned and executed:

Source: ESA’s Rosetta blog

______________________

(Also, on Feb. 9, Rosetta captured a full-frame NavCam image of 67P from 105 km. I’ve edited that image for additional contrast and added a blue tint. Enjoy!)

Comet 67P on Feb. 9, 2015 from 105 km (65 miles)
Comet 67P on Feb. 9, 2015 from 105 km (65 miles)

ESA Marks 50 Years of Cooperative Space Innovation

In 1964 the European Launcher Development Organisation (ELDO) and the European Space Research Organisation (ESRO) were founded, on February 29 and March 20 respectively, marking the beginning of Europe as a major space power and player in the new international venture to explore beyond our planet. A decade later these two entities merged to become ESA, and the rest, as it’s said, is history.

The video above commemorates ESA’s service to the cooperation and innovation of European nations in space, and indeed the entire world with many of the far-reaching exploration missions its member states have developed, launched and maintained. From advanced communications and observational satellites to its many missions exploring the worlds of the Solar System to capturing the light from the beginning of the Universe, ELDO, ESRO, and ESA have pushed the boundaries of science and technology in space for half a century… and are inspiring the next generation to continue exploring into the decades ahead. So happy anniversary, ESA — I can only imagine what we might be looking back on in another 50 years!

Source: ESA. See more key dates from ESA’s history here

Flying, Rolling Robot Might Make a Great Titan Explorer

The HyTAQ (Hybrid Terrestrial and Aerial Quadrotor) robot developed at Illinois Institute of Technology (IIT)

Ever since the Huygens probe landed on Titan back in January 2005, sending us our first tantalizing and oh-so-brief glimpses of the moon’s murky, pebbly surface, researchers have been dreaming up ways to explore further… after all, what’s more intriguing than a world in our own Solar System that’s basically a miniature version of an early Earth (even if it’s quite a few orders of magnitude chillier?)

Many concepts have been suggested as to the best way to explore Titan, from Mars-style rovers to boats that would sail its methane seas to powered gliders… and even hot-air balloons have been put on the table. Each of these have their own specific benefits, specially suited to the many environments that are found on Titan, but what if you could have two-in-one; what if you could, say, rove and fly?

That’s what this little robot can do.

Designed by Arash Kalantari and Matthew Spenko at the Robotics Lab at Illinois Institute of Technology, this rolling birdcage is actually a quadrotor flying craft that’s wrapped in a protective framework, allowing it to move freely along the ground and then take off when needed, maneuvering around obstacles easily.

A design like this, fitted with scientific instruments and given adequate power supply, might make a fantastic robotic explorer for Titan, where the atmosphere is thick and the terrain may range from rough and rocky to sandy and slushy. (And what safer way to ford a freezing-cold Titanic stream than fly over it?)

Also, the robot’s cage design may make it better suited to travel across the frozen crust of Titan’s flood plains, which have been found to have a consistency like damp sand with a layer of frozen snow on top. Where wheels could break through and get permanently stuck (a la Spirit) a rolling cage might remain on top. And if it does break through… well, fire up the engines and take off.

The robot (as it’s designed now) is also very energy-efficient, compared to quadrotors that only fly.

“During terrestrial locomotion, the robot only needs to overcome rolling resistance and consumes much less energy compared to the aerial mode,” the IIT website notes. “This solves one of the most vexing problems of quadrotors and rotorcraft in general — their short operation time. Experimental results show that the hybrid robot can travel a distance 4 times greater and operate almost 6 times longer than an aerial only system.”

Of course this is all just excited speculation at this point. No NASA or ESA contracts have been awarded to IIT to build the next Titan explorer, and who knows if the idea is on anyone else’s plate. But innovations like this, from schools and the private sector, are just the sorts of exciting things that set imaginations rolling (and flying!)

PIA08115_n

Color view of Titan’s surface, captured by the Huygens probe after landing in January 2005. (NASA/JPL/ESA/University of Arizona)

Video by RoboticsIIT

Curiosity’s Sundial Carries a Message of Hope

 A recent high-definition image from Curiosity’s Mastcam shows the rover’s sundial (NASA/JPL-Caltech)

While Curiosity is definitely loaded up with some of the most high-tech instruments ever made to investigate the surface of Mars, it also carries a very low-tech instrument: a sundial (aka the “MarsDial”) which can be used to determine the position of the Sun in the sky and the season on Mars just like they do here on Earth. Curiosity’s sundial also has additional color calibration tools for the rover’s Mastcam, which captured the image above on August 19 — the 13th “Sol” of the mission.

The connection between a device invented by people thousands of years ago being in use today on a robotic explorer on another planet didn’t go unnoticed by the Mars Exploration Rover team either; in addition to the words “Mars 2012” and “To Mars, To Explore” around its top bezel, Curiosity’s sundial also carries a message of history, hope and inspiration printed along its edges…

Along with line drawings and the word for “Mars” in sixteen languages, Curiosity’s sundial bears the following inscription:

“For millennia, Mars has stimulated our imaginations. First, we saw Mars as a wandering star, a bringer of war from the abode of the gods. In recent centuries, the planet’s changing appearance in telescopes caused us to think that Mars had a climate like the Earth’s. Our first space age views revealed only a cratered, Moon-like world, but later missions showed that Mars once had abundant liquid water. Through it all, we have wondered: Has there been life on Mars? To those taking the next steps to find out, we wish a safe journey and the joy of discovery.”

Curiosity’s successful landing on Mars at 10:31 p.m. on August 5, 2012 (PDT) was only the first (although very exciting!) step of its mission, and the first of hopefully many next steps to explore our neighboring world. Perhaps one day this message will be revisited by human explorers on Mars who may then reflect back on how it all began, and all of the innovations, hope and — well, curiosity — that made each of their rust-dusted steps possible.

Follow the sun, Curiosity!

Find out more about Curiosity’s many science and exploration instruments on JPL’s interactive 3D page here, and keep up with the latest MSL downloaded images here.

Europe’s Plans to Visit the Moon in 2018

The European Space Agency is aiming for the Moon with their Lunar Lander mission, anticipated to arrive on the lunar surface in 2018. Although ESA successfully put a lander on Titan with the Huygens probe in 2005, this will be the first European spacecraft to visit the surface of Earth’s Moon.

Although Lunar Lander will be an unmanned robotic explorer, the mission will be a forerunner to future human exploration of the Moon as well as Mars. Lunar Lander will use advanced technologies for autonomous landing and will be able to determine the best location for touchdown on its own, utilizing lasers to avoid obstacles on the Moon’s surface.

With no GPS on the Moon, Lunar Lander will navigate by digitally imaging the surface on the fly. Landing will be accomplished via thrusters, which were successfully tested earlier this year at a test chamber in Germany.

Lunar Lander’s destination will be the Moon’s south pole, where no exploration missions have ever landed. Once on the lunar surface, the Lander will investigate Moon dust using a robotic arm and a suite of onboard diagnostic instruments, sending data and images back to scientists on Earth for further study.

Watch a video of the Lunar Lander mission below, from launch to landing.

Read more about Lunar Lander on the ESA site here.

Images and video: ESA

The Audacity to Dream

Making its debut at the TEDxISU (International Space University) event on July 6, the video above is an inspirational call-to-arms for anyone who’s ever looked to the stars and dreamed of a day when the sky was, in fact, not the limit. From Sputnik to Space Station, from Vostok to Virgin Galactic, the video reminds us of the spirit of adventure that unites us, regardless of time or place or politics. Dreaming, after all, is universal.

Check it out.

“A planet is the cradle of mind, but one cannot live in a cradle forever.”
– Konstantin Tsiolkovsky

The Moon Is Toxic

As our closest neighbor in space, a time-capsule of planetary evolution and the only world outside of Earth that humans have stepped foot on, the Moon is an obvious and ever-present location for future exploration by humans. The research that can be done on the Moon — as well as from it — will be invaluable to science. But the only times humans have visited the Moon were during quick, dusty  jaunts on its surface, lasting only 2-3 days each before departing. Long-term human exposure to the lunar environment has never been studied in depth, and it’s quite possible that — in addition to the many inherent dangers of living and working in space — the Moon itself may be toxic to humans.

An international team of researchers has attempted to quantify the health dangers of the Moon — or at least its dust-filled regolith. In a paper titled “Toxicity of Lunar Dust” (D. Linnarsson et al.) the health hazards of the Moon’s fine, powdery dust — which plagued Apollo astronauts both in and out of their suits — are investigated in detail (or as best as they can be without actually being on the Moon with the ability to collect pristine samples.)

Within their research the team, which included physiologists, pharmacologists, radiologists and toxicologists from 5 countries, investigated some of the following potential health hazards of lunar dust:

Inhalation. By far the most harmful effects of lunar dust would come from inhalation of the particulates. Even though lunar explorers would be wearing protective gear, suit-bound dust can easily make its way back into living and working areas — as Apollo astronauts quickly discovered. Once inside the lungs the super-fine, sharp-edged lunar dust could cause a slew of health issues, affecting the respiratory and cardiovascular system and causing anything from airway inflammation to increased risks of various cancers. Like pollutants encountered on Earth, such as asbestos and volcanic ash, lunar dust particles are small enough to penetrate deep within lung tissues, and may be made even more dangerous by their long-term exposure to proton and UV radiation. In addition, the research suggests a microgravity environment may only serve to ease the transportation of dust particles throughout the lungs.

Skin Damage. Lunar regolith has been found to be very sharp-edged, mainly because it hasn’t undergone the same kind of erosive processes that soil on Earth has. Lunar soil particles are sometimes even coated in a glassy shell, the result of rock vaporization by meteorite impacts. Even the finer particles of dust — which constitute about 20% of returned lunar soil samples — are rather sharp, and as such pose a risk of skin irritation in instances of exposure. Of particular note by the research team is abrasive damage to the outer layer of skin at sites of “anatomical prominence”, i.e., fingers, knuckles, elbows, knees, etc.

“The dust was so abrasive that it actually wore through three layers of Kevlar-like material on Jack [Schmitt’s] boot.”

– Professor Larry Taylor, Director of the Planetary Geosciences Institute, University of Tennessee (2008)

Eye Damage. Needless to say, if particles can pose abrasive damage to human skin, similar danger to the eyes is also a concern. Whether lunar dust makes its way into the eye via airborne movement (again, much more of a concern in microgravity) or through direct contact from fingers or another dust-coated object, the result is the same: danger of abrasion. Having a scratched cornea is no fun, but if you’re busy working on the Moon at the time it could turn into a real emergency.

While the research behind the paper used data about airborne pollutants known to exist on Earth and simulated lunar dust particles, actual lunar dust is harder to test. The samples returned by the Apollo missions have not been kept in a true lunar-like environment — being removed from exposure to radiation and not stored in a vacuum, for instance — and as such may not accurately exhibit the properties of actual dust as it would be encountered on the Moon. The researchers conclude that only studies conducted on-site will fill the gaps in our knowledge of lunar dust toxicity. Still, the research is a step in the right direction as it looks to ensure a safe environment for future explorers on the Moon, our familiar — yet still alien — satellite world.

Read the team’s paper in full here.

“The Apollo astronauts reported undesirable effects affecting the skin, eyes and airways that could be related to exposure to the dust that had adhered to their space suits during their extravehicular activities and was subsequently brought into their spacecraft.”

– Dag Linnarsson, lead author, Toxicity of Lunar Dust

Top image: Apollo 16 astronaut Charlie Duke with a dust-coated LRV. Side image: a dusty Gene Cernan in the LM at the end of an Apollo 17 EVA. (NASA/JSC)

Humans on Mars by 2023?

Reality TV goes to Mars! Dutch entrepreneur Bas Lansdorp is leading a group visionaries and businesspeople who want to send four humans to Mars by 2023, and they say they can achieve their goal at an estimated cost of $6 billion USD. How can they do it? By building it into a global media spectacle. And oh, by the way, this will be a one-way trip.

“Who would be able to look away from an adventure such as this one?” asks Lansdorp in his bio on the Mars One website. “Who wouldn’t be compelled to watch, talk about, get involved in the biggest undertaking mankind has ever made? The entire world will be able to follow this giant leap from the start; from the very first astronaut selections to the established, independent village years later. The media focus that comes with the public’s attention opens pathways to sponsors and investors.”

As far as the one-way mission (a concept that Universe Today has written about extensively) the Mars One website notes, “this is no way excludes the possibility of a return flight at some point in the future.”

[/caption]

The difference between this mission and the one proposed by Jim McLane back in 2008 is that McLane wanted to send just one person to Mars.

However, the Mars One group says that once the first trip is successful and Mars becomes developed, it will be “much easier to build the returning rocket there.”

In a Q&A on reddit, Lansdorp said the biggest challenge will be financing.

“We have estimated, and discussed with our suppliers that it will cost about 6 billion US$ to get the first crew of four people to Mars. We plan to organize the biggest media event ever around our mission. When we launch people to Mars and when they land, the whole world will watch. After that a lot of people will be very interested to see how ‘our people on Mars’ are doing.”

But the big challenge is that the biggest expenditures will be building the equipment before they send people to Mars. “This is why we are building a very strong technical case now. If we can convince sponsors and investors that this will really happen, then we believe that we can convince them to help us finance it,” Lansdorp said.

As far as technologies, Mars One expects to use a SpaceX Falcon 9 Heavy as a launch vehicle, a transit vehicle/space habitat built by Thales Alenia Space, a variant on the SpaceX Dragon as the lander, an inflatable habitat built by ILC Dover, a rover vehicle by MDA Space Missions, and Mars spacesuits made by Paragon.

The project website says “no new technologies” will be needed, but does any space agency or company really have a good handle on providing providing ample air, oxygen, energy, food and water for extended (lifetimes?) periods of time? Instead, the website provides more details on FAQ’s like, What will the astronauts do on Mars? Why should we go to Mars? Is it safe to live on Mars? How does the Mars base communicate with Earth? And the Mars One team emphasizes that this can be done with current technology. However, no one really knows how to land large payloads on Mars yet, so at least some development will be required there.

Who will go? Later this year they will begin to take applications and eventually 40 people will take part in a rigid, decade-long training program (which sounds very expensive) where the ‘contestants” will essentially be voted off the island to get to the final four astronauts. The selection and training process will be broadcast via television and online to public, with viewers voting on the final selected four.

It’s an intriguing proposition, but one filled with technological hurdles. I’ve just finished reading Ben Bova’s “Mars,” so I’m also thinking the Mars One folks will need to be on the lookout for micrometeorite swarms.

Mars One website.

Space Exploration By Robot Swarm

[/caption]

With all there’s yet to learn about our solar system from the many smaller worlds that reside within it — asteroids, protoplanets and small moons — one researcher from Stanford University is suggesting we unleash a swarm of rover/spacecraft hybrids that can explore en masse.

Marco Pavone, an assistant professor of aeronautics and astronautics at Stanford University and research affiliate at JPL, has been developing a concept under NASA’s Innovative Advanced Concepts (NIAC) Program that would see small spherical robots deployed to small worlds, such as Mars’ moons Phobos and Deimos, where they would take advantage of low gravity to explore — literally —  in leaps and bounds.

Due to the proposed low costs of such a mission, multiple spacecraft could be scattered across a world, increasing the area that could be covered as well as allowing for varied surfaces to be explored. Also, were one spacecraft to fail the entire mission wouldn’t be compromised.

The concept is similar to what NASA has done in the past with the Mars rovers, except multiplied in the number of spacecraft (and reduced in cost.)

The robots would be deployed from a “mother” spacecraft and spring into action upon landing, tumbling, hopping and vaulting their way across low-mass worlds.

In addition to providing our first views from the surfaces of such worlds, Pavone’s hybrid rovers could also help prepare for future, more in-depth exploration.

“The systematic exploration of small bodies would help unravel the origin of the solar system and its early evolution, as well as assess their astrobiological relevance,” Pavone explains. “In addition, we can evaluate the resource potential of small bodies in view of future human missions beyond Earth.”

Read more from NASA’s Office of the Chief Technologist here.

Photo courtesy of Marco Pavone

Video: NASA’s Pursuit of Light and Big Science

The folks at NASA Goddard’s multimedia division have outdone themselves this time on a new video compilation which, really, shows how NASA dreams big science. Its asks the big questions of why we really explore and how important these explorations can be. It shows views of the Earth, the planets, the Sun, and the endless universe beyond. The video description says it best: “Come for the cool, stay for the music, take away a sense of wonder to share. It’s six minutes from Earth to forever, and you can see it here!”

And what will be lost if NASA is allowed to just fade away through neglect? If you live in the US, contact your Congress members and encourage them to support NASA. Currently NASA’s budget isn’t big enough to even show up as a line on a pie chart, and represents 0.46% of the US budget — less than half a penny for every dollar spent in the US, and has been relatively unchanged for 25 years.

Here’s a graph of what NASA’s percentage of the budget has been like over time:

“NASA contributes to society in massively huge ways in terms of technological, economical, and inspirational progress,” says the website Penny4NASA. “The progress that we have seen in the last 40 years comes largely from the world’s extremely talented scientists and engineers. Now, talk to most any scientist and/or engineer of the last 40 years, and we are willing to bet that they were drawn into their chosen field by something NASA related.”

Check out Penny4NASA for more information and to sign a petition to ask for more funding for NASA.