TESS Finds a Planet That Takes 482 Days to Orbit, the Widest it’s Seen so Far

An artist's rendition of the two planets and star in the TOI-4600 system. One of them has the longest orbit of any planet yet found by TESS. Image Credit: Tedi Vick

We’re rapidly learning that our Solar System, so familiar to us all, does not represent normal.

A couple of decades ago, we knew very little about other solar systems. Astronomers had discovered only a handful of exoplanets, especially around pulsars. But that all changed in the last few years.

Continue reading “TESS Finds a Planet That Takes 482 Days to Orbit, the Widest it’s Seen so Far”

Is Humanity Ready to Realize the Dream of Interstellar Travel?

The 8th Interstellar Symposium was held from July 10th to 13th at McGill University. Credit: Interstellar Research Group (IRG)

For generations, humans have dreamed, speculated, and theorized about the possibility of journeying to distant stars, finding habitable planets around them, and settling down. In time, the children of these bold adventurers would create a new civilization and perhaps even meet the children of Earth. People could eventually journey from one world to another, cultures would mix, and trade and exchanges would become a regular feature. The potential for growth that would come from these exchanges – intellectually, socially, politically, technologically, and economically – would be immeasurable.

Expanding humanity’s reach beyond the Solar System is not just the fevered dream of science fiction writers and futurists. It has also been the subject of very serious scientific research, and interest in the subject is again on the rise. Much like sending crewed missions to Mars, establishing permanent outposts on the Moon, and exploring beyond cislunar space with human astronauts instead of robots – there is a growing sense that interstellar travel could be within reach. But just how ready are we for this bold and adventurous prospect? Whether we are talking about probes vs. crews or technological vs. psychological readiness, is interstellar travel something we are ready to take on?

This was a central question raised at a public outreach event aptly named “Interstellar Travel: Are We Ready?” that took place at the 8th Interstellar Symposium: In Light of Other Suns, held from July 10th to 13th at the University of McGill in Montreal, Quebec. The symposium was hosted by the Interstellar Research Group (IRG), the International Academy of Astronautics (IAA), and Breakthrough Initiatives – in coordination with the University of McGill – and featured guest speakers and luminaries from multiple disciplines – ranging from astronomy and astrophysics to astrobiology, geology, and cosmology.

Continue reading “Is Humanity Ready to Realize the Dream of Interstellar Travel?”

Astronomers Confirm First Exoplanet “Thermometer Molecule” that is Typically Used to Study Brown Dwarfs

Artist impression of "hot Jupiter" exoplanet, WASP-31 b. (Credit: ESA/Hubble & NASA)

A recent study published in The Astrophysical Journal Letters examines a rare alloy molecule known as chromium hydride (CrH) and its first-time confirmation on an exoplanet, in this case, WASP-31 b. Traditionally, CrH is only found in large quantities between 1,200 to 2,000 degrees Kelvin (926.85 to 1,726.85 degrees Celsius/1700 to 3,140 degrees Fahrenheit) and used to ascertain the temperature of cool stars and brown dwarfs. Therefore, astronomers like Dr. Laura Flagg in the Department of Astronomy and Carl Sagan Institute at Cornell University refer to CrH as a “thermometer for stars”.

Continue reading “Astronomers Confirm First Exoplanet “Thermometer Molecule” that is Typically Used to Study Brown Dwarfs”

Watch an Actual Exoplanet Orbit its Star for 17 Years

Artist rendition of exoplanet, Beta Pictoris b, whose partial orbit was recently featured in a time-lapsed video. (Credit: ESO L. Calçada/N. Risinger)

Searching for exoplanets is incredibly difficult given their literal astronomical distances from Earth, which is why a myriad of methods have been created to find them. These include transit, redial velocity, astrometry, gravitational microlensing, and direct imaging. It is this last method that was used to recently create a time-lapse video that compresses a mind-blowing 17 years of the partial orbit of exoplanet, Beta Pictoris b, into 10 seconds. The data to create the video was collected between 2003 and 2020, it encompasses approximately 75 percent of the total orbit, and marks the longest time-lapse video of an exoplanet ever produced.

Continue reading “Watch an Actual Exoplanet Orbit its Star for 17 Years”

The Most Compelling Places to Search for Life Will Look Like “Anomalies”

Will it be possible someday for astrobiologists to search for life "as we don't know it"? Credit: NASA/Jenny Mottar

In the past two and a half years, two next-generation telescopes have been sent to space: NASA’s James Webb Space Telescope (JWST) and the ESA’s Euclid Observatory. Before the decade is over, they will be joined by NASA’s Nancy Grace Roman Space Telescope (RST), Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx), and the ESA’s PLAnetary Transits and Oscillations of stars (PLATO) and ARIEL telescopes. These observatories will rely on advanced optics and instruments to aid in the search and characterization of exoplanets with the ultimate goal of finding habitable planets.

Along with still operational missions, these observatories will gather massive volumes of high-resolution spectroscopic data. Sorting through this data will require cutting-edge machine-learning techniques to look for indications of life and biological processes (aka. biosignatures). In a recent paper, a team of scientists from the Institute for Fundamental Theory at the University of Florida (UF-IFL) recommended that future surveys use machine learning to look for anomalies in the spectra, which could reveal unusual chemical signatures and unknown biosignatures.

Continue reading “The Most Compelling Places to Search for Life Will Look Like “Anomalies””

This Jupiter-Sized Exoplanet is Unusual for Several Reasons

Artist illustration of a warm Jupiter gas-giant exoplanet (right) orbiting its parent star, along with several smaller exoplanets. (Credit: Detlev Van Ravenswaay/Science Photo Library)

In a recent study published in the Monthly Notices of the Royal Astronomical Society, a team of international researchers examined exoplanet TOI-4860 b, which is located approximately 80 parsecs (261 light-years) from Earth and has an orbital period of approximately 1.52 days around a low-mass star, or a star smaller than our Sun. Exoplanets orbiting so close to their parent stars aren’t uncommon and commonly known as “hot Jupiters”.

However, TOI-4860 b is unique due its relative size compared to its parent star, along with its lower surface temperatures compared to “hot Jupiters” and possessing large amounts of heavy elements. These attributes are why researchers are classifying TOI-4680 b as a “warm Jupiter”, and could challenge traditional planetary systems formation models while offering new insights into such processes, as well.

Continue reading “This Jupiter-Sized Exoplanet is Unusual for Several Reasons”

The PLATO Mission Could be the Most Successful Planet Hunter Ever

Artist's impression of the ESA's PLATO mission. Credit: ESA/ATG medialab

In 2026, the European Space Agency (ESA) will launch its next-generation exoplanet-hunting mission, the PLAnetary Transits and Oscillations of stars (PLATO). This mission will scan over 245,000 main-sequence F, G, and K-type (yellow-white, yellow, and orange) stars using the Transit Method to look for possible Earth-like planets orbiting Solar analogs. In keeping with the “low-hanging fruit” approach (aka. follow the water), these planets are considered strong candidates for habitability since they are most likely to have all the conditions that gave rise to life here on Earth.

Knowing how many planets PLATO will likely detect and how many will conform to Earth-like characteristics is essential to determining how and where it should dedicate its observation time. According to a new study that will be published shortly in the journal Astronomy & Astrophysics, the PLATO mission is likely to find tens of thousands of planets. Depending on several parameters, they further indicate that it could detect a minimum of 500 Earth-sized planets, about a dozen of which will have favorable orbits around G-type (Sun-like) stars.

Continue reading “The PLATO Mission Could be the Most Successful Planet Hunter Ever”

If Rogue Planets are Everywhere, How Could We Explore Them?

This artist’s impression shows an example of a rogue planet with the Rho Ophiuchi cloud complex visible in the background. Rogue planets have masses comparable to those of the planets in our Solar System but do not orbit a star, instead roaming freely on their own. Image Credit: ESO/M. Kornmesser/S. Guisard

At one time, astronomers believed that the planets formed in their current orbits, which remained stable over time. But more recent observations, theory, and calculations have shown that planetary systems are subject to shake-ups and change. Periodically, planets are kicked out of their star systems to become “rogue planets,” bodies that are no longer gravitationally bound to any star and are adrift in the interstellar medium (ISM). Some of these planets may be gas giants with tightly bound icy moons orbiting them, which they could bring with them into the ISM.

Like Jupiter, Saturn, Uranus, and Neptune, these satellites could have warm water interiors that might support life. Other research has indicated that rocky planets with plenty of water on their surfaces could also support life through a combination of geological activity and the decay of radionuclides. According to a recent paper by an international team of astronomers, there could be hundreds of rogue planets in our cosmic neighborhood. Based on their first-ever feasibility analysis, they also indicate that deep space missions could explore these unbound objects more easily than planets still bound to their stars.

Continue reading “If Rogue Planets are Everywhere, How Could We Explore Them?”

How Will We the Find First Signs of Alien Life — and When?

Illustration: Assortment of exoplanets
Astronomers have detected thousands of planets, including dozens that are potentially habitable. (NASA Illustration)

When will we find evidence for life beyond Earth? And where will that evidence be found? University of Arizona astronomer Chris Impey, the author of a book called “Worlds Without End,” is betting that the first evidence will come to light within the next decade or so.

But don’t expect to see little green men or pointy-eared Vulcans. And don’t expect to get radio signals from a far-off planetary system, as depicted in the 1992 movie “Contact.”

Instead, Impey expects that NASA’s James Webb Space Telescope — or one of the giant Earth-based telescopes that’s gearing up for observations — will detect the spectroscopic signature of biological activity in the atmosphere of a planet that’s light-years away from us.

“Spectroscopic data is not as appealing to the general public,” Impey admits in the latest episode of the Fiction Science podcast. “People like pictures, and so spectroscopy never gets its fair due in the general talk about astronomy or science, because it’s slightly more esoteric. But it is the tool of choice here.”

Continue reading “How Will We the Find First Signs of Alien Life — and When?”

There Could be Trillions of Rogue Planets Wandering the Milky Way

Artist's rendition of an ice-encrusted, Earth-mass rogue planet free-floating through space. (Credit: NASA’s Goddard Space Flight Center)

A pair of new studies set to be published in The Astronomical Journal examine new discoveries in the field of rogue planets, which are free-floating exoplanets that drift through space unbound by the gravitational tug of a star. They can form within their own solar system and get ejected, or they can form independently, as well. The first study examines only the second discovery of an Earth-mass rogue planet—the first being discovered in September 2020—while the second study examines the potential number of rogue planets that could exist in our Milky Way Galaxy.

Continue reading “There Could be Trillions of Rogue Planets Wandering the Milky Way”