Why is JWST Having So Much Trouble with the TRAPPIST-1 System?

A new step-by-step roadmap describes how to improve the efficiency of data gathering with the JWST to benefit the astronomy community at large. “Our hope now is that a large-scale community effort guided by the roadmap can be initiated to yield deliverables at a timely pace,” says MIT Associate Professor Julien de Wit. Credits:Image components courtesy of NASA/JPL-Caltech.

When the James Webb Space Telescope was launched it came with a fanfare expecting amazing things, much like the Hubble Space Telescope. One of JWST’s most anticipated target was TRAPPIST-1. This inconspicuous star is host to seven Earth-sized planets, with at least three in the habitable zone. The two inner planets are airless worlds but so far there has been no word of the third planet, the first in the habitable zone. The question is why and what makes it so tricky to observe?

Continue reading “Why is JWST Having So Much Trouble with the TRAPPIST-1 System?”

What Impact Does Ozone Have on an Exoplanet?

Artist's illustration of Proxima Centauri b. ESO/M. Kornmesser

As we discover more and more exoplanets – and the current total is in excess of 5,200 – we continue to try to learn more about them. Astrobiologists busy themselves analysing their atmospheres searching for anything that provides a sign of life. It is quite conceivable of course that the Universe is teeming with life based on very different chemistry to ours but we often look to life on Earth to know what to look for. On Earth for example, ozone forms through photolysis of molecular oxygen and is an indicator of life. Using the James Webb Space Telescope astronomers are searching stars in the habitable zone of their star for the presence of ozone and how it impacts their climate.

Continue reading “What Impact Does Ozone Have on an Exoplanet?”

Webb Explains a Puffy Planet

WASP-107 b

I love the concept of a ‘puffy’ planet! The exoplanets discovered that fall into this category are typically the same size of Jupiter but 1/10th the mass! They tend to orbit their host star at close in orbits and are hot but one has been found that is different from the normal. This Neptune-mass exoplanet has been thought to be cooler but still have a lower density. The James Webb Space Telescope (JWST) has recently discovered that tidal energy from its elliptical orbit keeps its interior churning and puffs it out. 

Continue reading “Webb Explains a Puffy Planet”

Maybe Ultra-Hot Jupiters Aren’t So Doomed After All

Artist's impression of an ultra-hot Jupiter. (Credit: NASA, ESA and G. Bacon)

Ultra-hot Jupiters (UHJs) are some of the most fascinating astronomical objects in the cosmos, classified as having orbital periods of less than approximately 3 days with dayside temperatures exceeding 1,930 degrees Celsius (3,500 degrees Fahrenheit), as most are tidally locked with their parent stars. But will these extremely close orbits result in orbital decay for UHJs eventually doom them to being swallowed by their star, or can some orbit for the long term without worry? This is what a recent study accepted to the Planetary Science Journal hopes to address as a team of international researchers investigated potential orbital decays for several UHJs, which holds the potential to not only help astronomers better understand UHJs but also the formation and evolution of exoplanets, overall.

Continue reading “Maybe Ultra-Hot Jupiters Aren’t So Doomed After All”

Saturn-Sized Exoplanet Isn’t Losing Mass Quickly Enough

Pablo Carlos Budassi - Own work. Simulated view of a mini-Neptune or "gas dwarf"

We have discovered over 5,000 planets around other star systems. Amongst the veritable cosmic menagerie of exoplanets, it seems there is a real shortage of Neptune-sized planets close to their star. A new paper just published discusses a Saturn-sized planet close to its host star which should be experiencing mass loss, but isn’t. Studying this world offers a new insight into exoplanet formation across the Universe. 

Continue reading “Saturn-Sized Exoplanet Isn’t Losing Mass Quickly Enough”

Could We Directly Observe Volcanoes on an Exoplanet?

After a few decades of simply finding exoplanets, humanity is starting to be able to do something more – peer into their atmospheres. The James Webb Space Telescope (JWST) has already started looking at the atmospheres of some larger exoplanets around brighter stars. But in many cases, scientists are still developing models that both explain what the planet’s atmosphere is made of and match the data. A new study from researchers at UC Riverside, NASA’s Goddard Spaceflight Center, American University, and the University of Maryland looks at what one particular atmospheric process might look like on an exoplanet – volcanism.

Continue reading “Could We Directly Observe Volcanoes on an Exoplanet?”

Water Vapor Found in the Atmosphere of a Small Exoplanet

Artist's impression of GJ 9827 d, which is the smallest exoplanet ever found to potentially possess water in its atmosphere. (Credit: NASA, ESA, Leah Hustak and Ralf Crawford (STScI))

A recent study published in The Astrophysucal Journal Letters discusses the detection of water within the atmosphere of GJ 9827 d, which is a Neptune-like exoplanet located approximately 97 light-years from Earth, using NASA’s Hubble Space Telescope (HST), and is the smallest exoplanet to date where water has been detected in its atmosphere. This study was conducted by an international team of researchers and holds the potential to identify exoplanets throughout the Milky Way Galaxy which possess water within their atmospheres, along with highlighting the most accurate methods to identify the water, as well.

Continue reading “Water Vapor Found in the Atmosphere of a Small Exoplanet”

TRAPPIST-1c Isn’t the Exo-Venus We Were Hoping For. But Don’t Blame the Star

A recent study accepted to The Astrophysical Journal uses computer models to investigate why the exoplanet, TRAPPIST-1c, could not possess a thick carbon dioxide (CO2) atmosphere despite it receiving the same amount of solar radiation from its parent star as the planet Venus receives from our Sun, with the latter having a very thick carbon dioxide atmosphere. This study comes after a June 2023 study published in Nature used data from NASA’s James Webb Space Telescope (JWST) to ascertain that TRAPPIST-1c does not possess a carbon dioxide atmosphere. Both studies come as the TRAPPIST-1 system, which is located approximately 41 light-years from Earth and orbits its star in just 2.4 days, has received a lot of attention from the scientific community in the last few years due to the number of confirmed exoplanets within the system and their potential for astrobiology purposes.

Continue reading “TRAPPIST-1c Isn’t the Exo-Venus We Were Hoping For. But Don’t Blame the Star”

This Hot Jupiter is Leaving a Swirling Tail of Helium in its Wake

Image from the computer simulation of HAT-P-32 b (bright dot left of star) leaving a trail of helium during its 2.2-day, clockwise orbit (dashed line). (Credit: M. MacLeod (Harvard-Smithsonian Center for Astrophysics) and A. Oklopčić (Anton Pannekoek Institute for Astronomy, University of Amsterdam)

In a recent study published in Science Advances, a team of researchers commissioned the Hobby-Eberly Telescope (HET), which is designed to study exoplanetary atmospheres, to examine how a “hot Jupiter” exoplanet is losing its helium atmosphere as it orbits its parent star, leaving tails of helium that extend approximately 25 times the diameter of the planet itself.

Continue reading “This Hot Jupiter is Leaving a Swirling Tail of Helium in its Wake”

Even if Exoplanets Have Atmospheres With Oxygen, it Doesn’t Mean There’s Life There

Artist’s impression of a sunset seen from the surface of an Earth-like exoplanet. Credit: ESO/L. Calçada

In their efforts to find evidence of life beyond our Solar System, scientists are forced to take what is known as the “low-hanging fruit” approach. Basically, this comes down to determining if planets could be “potentially habitable” based on whether or not they would be warm enough to have liquid water on their surfaces and dense atmospheres with enough oxygen.

This is a consequence of the fact that existing methods for examining distant planets are largely indirect and that Earth is only one planet we know of that is capable of supporting life. But what if planets that have plenty of oxygen are not guaranteed to produce life? According to a new study by a team from Johns Hopkins University, this may very well be the case.

Continue reading “Even if Exoplanets Have Atmospheres With Oxygen, it Doesn’t Mean There’s Life There”