The Orbit of Earth. How Long is a Year on Earth?

Ever since the 16th century when Nicolaus Copernicus demonstrated that the Earth revolved around in the Sun, scientists have worked tirelessly to understand the relationship in mathematical terms. If this bright celestial body – upon which depends the seasons, the diurnal cycle, and all life on Earth – does not revolve around us, then what exactly is the nature of our orbit around it?

For several centuries, astronomers have applied the scientific method to answer this question, and have determined that the Earth’s orbit around the Sun has many fascinating characteristics. And what they have found has helped us to understanding why we measure time the way we do.

Orbital Characteristics:

First of all, the speed of the Earth’s orbit around the Sun is 108,000 km/h, which means that our planet travels 940 million km during a single orbit. The Earth completes one orbit every 365.242199 mean solar days, a fact which goes a long way towards explaining why need an extra calendar day every four years (aka. during a leap year).

The planet’s distance from the Sun varies as it orbits. In fact, the Earth is never the same distance from the Sun from day to day. When the Earth is closest to the Sun, it is said to be at perihelion. This occurs around January 3rd each year, when the Earth is at a distance of about 147,098,074 km.

The average distance of the Earth from the Sun is about 149.6 million km, which is also referred to as one astronomical unit (AU). When it is at its farthest distance from the Sun, Earth is said to be at aphelion – which happens around July 4th where the Earth reaches a distance of about 152,097,701 km.

And those of you in the northern hemisphere will notice that “warm” or “cold” weather does not coincide with how close the Earth is to the Sun. That is determined by axial tilt (see below).

Elliptical Orbit:

Next, there is the nature of the Earth’s orbit. Rather than being a perfect circle, the Earth moves around the Sun in an extended circular or oval pattern. This is what is known as an “elliptical” orbit. This orbital pattern was first described by Johannes Kepler, a German mathematician and astronomer, in his seminal work Astronomia nova (New Astronomy).

An illustration of Kepler's three laws of motion, which show two planets that have elliptical orbits around the Sun. Credit: Wikipedia/Hankwang
An illustration of Kepler’s three laws of motion, which show two planets that have elliptical orbits around the Sun. Credit: Wikipedia/Hankwang

After measuring the orbits of the Earth and Mars, he noticed that at times, the orbits of both planets appeared to be speeding up or slowing down. This coincided directly with the planets’ aphelion and perihelion, meaning that the planets’ distance from the Sun bore a direct relationship to the speed of their orbits. It also meant that both Earth and Mars did not orbit the Sun in perfectly circular patterns.

In describing the nature of elliptical orbits, scientists use a factor known as “eccentricity”, which is expressed in the form of a number between zero and one. If a planet’s eccentricity is close to zero, then the ellipse is nearly a circle. If it is close to one, the ellipse is long and slender.

Earth’s orbit has an eccentricity of less than 0.02, which means that it is very close to being circular. That is why the difference between the Earth’s distance from the Sun at perihelion and aphelion is very little – less than 5 million km.

Seasonal Change:

Third, there is the role Earth’s orbit plays in the seasons, which we referred to above. The four seasons are determined by the fact that the Earth is tilted 23.4° on its vertical axis, which is referred to as “axial tilt.” This quirk in our orbit determines the solstices – the point in the orbit of maximum axial tilt toward or away from the Sun – and the equinoxes, when the direction of the tilt and the direction to the Sun are perpendicular.

Over the course of a year the orientation of the axis remains fixed in space, producing changes in the distribution of solar radiation. These changes in the pattern of radiation reaching earth’s surface cause the succession of the seasons. Credit: NOAA/Thomas G. Andrews
Over the course of a year the orientation of the axis remains fixed in space, producing changes in the distribution of solar radiation. Credit: NOAA/Thomas G. Andrews

In short, when the northern hemisphere is tilted away from the Sun, it experiences winter while the southern hemisphere experiences summer. Six months later, when the northern hemisphere is tilted towards the Sun, the seasonal order is reversed.

In the northern hemisphere, winter solstice occurs around December 21st, summer solstice is near June 21st, spring equinox is around March 20th and autumnal equinox is about September 23rd. The axial tilt in the southern hemisphere is exactly the opposite of the direction in the northern hemisphere. Thus the seasonal effects in the south are reversed.

While it is true that Earth does have a perihelion, or point at which it is closest to the sun, and an aphelion, its farthest point from the Sun, the difference between these distances is too minimal to have any significant impact on the Earth’s seasons and climate.

Lagrange Points:

Another interesting characteristic of the Earth’s orbit around the Sun has to do with Lagrange Points. These are the five positions in Earth’s orbital configuration around the Sun where where the combined gravitational pull of the Earth and the Sun provides precisely the centripetal force required to orbit with them.

Sun Earth Lagrange Points. Credit: Xander89/Wikimedia Commons
Sun-Earth Lagrange Points. Credit: Xander89/Wikimedia Commons

The five Lagrange Points between the Earth are labelled (somewhat unimaginatively) L1 to L5. L1, L2, and L3 sit along a straight line that goes through the Earth and Sun. L1 sits between them, L3 is on the opposite side of the Sun from the Earth, and L2 is on the opposite side of the Earth from L1. These three Lagrange points are unstable,  which means that a satellite placed at any one of them will move off course if disturbed in the slightest.

The L4 and L5 points lie at the tips of the two equilateral triangles where the Sun and Earth constitute the two lower points. These points liem along along Earth’s orbit, with L4 60° behind it and L5 60° ahead.  These two Lagrange Points are stable, hence why they are popular destinations for satellites and space telescopes.

The study of Earth’s orbit around the Sun has taught scientists much about other planets as well. Knowing where a planet sits in relation to its parent star, its orbital period, its axial tilt, and a host of other factors are all central to determining whether or not life may exist on one, and whether or not human beings could one day live there.

We have written many interesting articles about the Earth’s orbit here at Universe Today. Here’s 10 Interesting Facts About Earth, How Far is Earth from the Sun?, What is the Rotation of the Earth?, Why are there Seasons?, and What is Earth’s Axial Tilt?

For more information, check out this article on NASA- Window’s to the Universe article on elliptical orbits or check out NASA’s Earth: Overview.

Astronomy Cast also espidoes that are relevant to the subject. Here’s BQuestions Show: Black black holes, Unbalancing the Earth, and Space Pollution.


Lake Asymmetry on Titan Explained

If you’ve wanted to take a swim in a lake on Titan, don’t: they’re not lakes like we have here on Earth, composed of methane and ethane instead of water. If you have somehow evolved lungs to breathe and swim in these chemicals, you should take your beach vacation in the northern hemisphere of Titan, where you’ll find many more lakes. Data taken by the Cassini mission has shown that there are more of these methane lakes concentrated in the northern hemisphere of Saturn’s moon than in the southern hemisphere. A recent analysis of the Cassini findings by a team at Caltech has shown that the cause of this asymmetry of lakes is due to the orbit of Saturn.

Because of the eccentricity of Saturn’s orbit around the Sun, there is a constant transfer of methane in Titan’s atmosphere from the south to the north. This effect is called astronomical climate forcing, or the Milankovitch cycle, and is thought to be the cause of ice ages here on Earth. We wrote about the Milankovitch cycles and their influence on climate change just earlier today.

Scientists originally thought that the northern hemisphere was somehow differently structured than the south. Imaging data from Cassini showed that ethane and methane lakes cover 20 times more area in the northern hemisphere than lakes in the south. There also are more half-filled and dried-up lake beds in the north. For example, if the composition of the surface of Titan somehow allowed for more methane and ethane to permeate the ground more in the north, this could have explained the difference. But further data from Cassini has confirmed that there is no great difference in topography between the two hemispheres of Titan.

The seasonal differences on Titan only partially explain the asymmetry of lake formation. One year on Titan is 29.5 Earth years, so about every 15 years the seasons of Titan reverse. In other words, the winter and summer seasons could have caused the evaporation and transfer of gas to the north, where it is cooled and is currently in the form of lakes until the seasons change again.

A team led by Oded Aharonson, associate professor of planetary science at Caltech found that there was much more to the story, though. The seasonal effect could only account for changes in lake depth for each hemisphere to vary by about one meter. Titan’s lakes are hundreds of meters deep on average, and this process is too slow to explain the depth changes we see today. It became apparent that the seasonal differences were only partly contributing to this difference.

“On Titan, there are long-term climate cycles in the global movement of methane that make lakes and carve lake basins. In both cases we find a record of the process embedded in the geology,” Aharonson said in a press release.

The Milankovitch cycle on Titan is likely the cause of the lake imbalance. Summers in the north are long and relatively mild, while those in the south are shorter, but warmer. Over thousands of years, this leads to a net movement of gas towards the north, which then condenses and stays there in liquid form. During southern summer Titan is close to the sun, and during northern summer it is approximately 12% further from the Sun.

Their results appear in the advance online version of Nature Geoscience for November 29th. Animations detailing the transfer are available on Oded Aharonson’s home page.

If Cassini would have been sent to Titan 32,000 years ago, the picture would have been reversed: the south pole would have many more lakes than the north. Conversely, any Titanian deep-lake divers in a few thousand years will fare much better in the lakes of the south.

Source: Eurekalert, Oded Aharonson’s Home Page