A Farewell to Plutoshine

Looking back at an overexposed Charon and Plutoshine. Credit: NASA/JPL/New Horizons

Sometimes, its not the eye candy aspect of the image, but what it represents. A recent image of Pluto’s large moon Charon courtesy of New Horizons depicting what could only be termed ‘Plutoshine’ caught our eye. Looking like something from the grainy era of the early Space Age, we see a crescent Charon, hanging against a starry background…

So what, you say? Sure, the historic July 14th , 2015 flyby of New Horizons past Pluto and friends delivered images with much more pop and aesthetic appeal. But look closely, and you’ll see something both alien and familiar, something that no human eye has ever witnessed, yet you can see next week.

We’re talking about the reflected ‘Plutoshine‘ on the dark limb of Charon. This over-exposed image was snapped from over 160,000 kilometers distant by New Horizons’ Ralph/Multispectral imager looking back at Charon, post flyby. For context, that’s just shy of half the distance between the Earth and the Moon. “Bigger than Texas” (Cue Armageddon), Charon is about 1200 kilometers in diameter and 1/8th the mass of Pluto. Together, both form the only true binary (dwarf) planetary pair in the solar system, with the 1/80th Earth-Moon pair coming in at a very distant second.

Earthshine on the Moon. Credit: Dave Dickinson

We see reflected sunlight coming off of a gibbous Pluto which is just out of frame, light that left the Sun 4 hours ago and took less than a second to make the final Pluto-Charon-New Horizons bounce. You can see a similar phenomenon next week, as Earthshine or Ashen Light illuminates the otherwise dark nighttime side of the Earth’s Moon, fresh off of passing New phase this weekend. Snow and cloud cover turned Moonward can have an effect on how bright Earthshine appears. One ongoing study based out of the Big Bear Solar observatory in California named Project Earthshine seeks to characterize long-term climate variations looking at this very phenomenon.

The view on the evening of January 28th looking west at dusk. Credit: Stellarium.

Standing on Pluto, you’d see a 3.5 degree wide Charon, 7 times larger than our own Full Moon. Of course, you’d need to be standing in the right hemisphere, as Pluto and Charon are tidally locked, and keep the same face turned towards each other. It would be a dim view, as the Sun shines at -20 magnitude at 30 AU distant, much brighter than a Full Moon, but still over 600 times fainter than sunny Earth. Dim Plutoshine on the nightside of Charon would, however, be easily visible to the naked eye.

A small 6 cm instrument, Ralph images in the visual to near-infrared range. Ralph compliments New Horizons larger LORRI instrument, which has a diameter and very similar optical configuration to an amateur 8-inch Schmidt-Cassegrain telescope.

Charon as seen from Pluto. Credit: Starry Night.

Don’t look for Pluto now; it just passed solar conjunction on the far side of the Sun on January 7th, 2017. Pluto reaches opposition and favorable viewing for 2017 on July 10th, one of the 101 Astronomical Events for 2017 that you’ll find in our free e-book, out from Universe Today.

And for an encore, New Horizons will visit the 45 kilometer in diameter Kuiper Belt Object 2014 MU69 on New Year’s Day 2019. From there, New Horizons will most likely chronicle the environs of the the distant solar system, as it joins Pioneer 10 and 11 and Voyagers 1 and 2 as human built artifacts cast adrift along the galactic plane.

A pretty pair: Pluto and Charon. Credit: NASA/JPL/New Horizons

And to think, it has taken New Horizons about 18 months for all of its flyby data to trickle back to the Earth. Enjoy, as it’ll be a long time before we visit Pluto and friends again.

Can Lunar Earthshine Reveal Ashen Light on Venus?

A recent celestial event provided a fascinating look at a long-standing astronomical mystery.

Is the ‘ashen light of Venus’ a real phenomena or an illusion?

On October 8th, the waning crescent Moon occulted (passed in front of) the bright planet Venus for observers in the southern hemisphere. And while such occurrences aren’t at all rare—the Moon occults Venus 3 times in 2015, and 25 times in this decade alone worldwide—the particulars were exceptional for observers in Australia, with a -4.5 magnitude, 40% illuminated Venus 30” in size emerging under dark skies 45 degrees west of the Sun from behind the dark limb of the Moon.

David and Joan Dunham rose to the challenge, and caught an amazing sequence featuring a brilliant Venus reappearing from behind the Moon as seen from the Australian Outback. When I first watched the video posted on You Tube by International Occultation Timing Association (IOTA) North American coordinator Brad Timerson, I was a bit perplexed, until I realized we were actually seeing the dark nighttime side of a waning Moon, with the bright crescent just out of view. Venus fully emerges in just under a minute after first appearing, and its -4th magnitude visage shines like a spotlight when revealed in its full glory.

Image credit:
A simulation of Venus on the limb of the Moon on October 8th. Image credit: Stellarium

“Joan and I observed the reappearance of Venus from behind the dark side of the 15% sunlit waning crescent Moon, from a dark and wide parking area on the east side of the Stuart Highway that afforded a low (1-2 degree) horizon to the east,” Dunham said. “Since the past observations of ashen light were visual, I decided that it would be best to use the 25mm eyepiece with the 8-inch visually rather than just make a redundant video. Neither the real-time visual observation, nor close visual inspection of the video recording, showed any sign of the dark side of Venus.”

Image credit:
Dunham’s ‘box scope’ imaging set up Image credit: David Dunham

We’ve written about the strange puzzle of ashen light on the nighttime side of Venus previously.

Reports by visual observers of ashen light on the dark limb of Venus over the centuries remain a mystery. On the crescent Moon, it’s easy to explain, as the Earth illuminates the nighttime side of our natural satellite; no such nearby illumination source exists in the case of Venus. Ashen light on Venus is either an illusion—a trick of the dazzling brilliance of a crescent Venus fooling the eye of the observer—or a real, and not as yet fully described phenomenon. Over the years, suggestions have included: lightning, airglow, volcanism, and aurora. A good prime candidate in the form of an ‘auroral nightglow” was proposed by New Mexico State University researchers in 2014. 19th century astronomers even proposed we might be seeing the lights of Venusian cities, or perhaps forest fires!

Could we ever separate the bright crescent of Venus from its nighttime side? A lunar occultation, such as the October 8th event provides just such a fleeting opportunity.  Though it’s hard to discern in the video, Dunham also watched the event visually through the telescope, and noted that, in his words, “the dark side of Venus remains dark,” with no brief appearance prior to sighting the crescent shining through the lunar valleys.

A tentative light curve made by Mr. Timerson seems to support this assertion, as the appearance of Venus quickly over-saturates the view:

Image credit
A rough light curve of the event. Photon counts are along the vertical axis, each tick mark along the horizontal equals one second. Image credit: Brad Timerson

Of course, this is far from conclusive, but seems to support the idea that the ashen light of Venus noted by ground observers is largely an optical illusion. Not all occultations of Venus by the Moon are created equal, and the best ones to test this method occur when Venus is less than half illuminated and greater than 40 degrees from the Sun against a relatively dark sky. Compounding problems, the ‘dark’ limb of the Moon has a brightness of its own, thanks to Earthshine. Dunham notes that observers in southern Alaska may have another shot at seeing this same phenomenon on December 7th, when the 13% illuminated crescent Moon occults a -4.2 magnitude 69% illuminated Venus, 42 degrees west of the Sun… the rest of North and South America will see this occultation in the daytime, still an interesting catch.

Image credit
The occultation footprint for the Dec 7 event. The dashed lines indicate where the event happens during daylight. Image credit: Occult 4.1

Looking at future occultations, there’s an intriguing possibility to hunt for the ashen light on the evening of October 10th, 2029, when then Moon occults a 57% illuminated Venus against dark skies for observers along the U.S. West Coast. Incidentally, a dawn occultation provides a better circumstance than a dusk one, as Venus always reemerges from the Moon’s dark limb when it’s waning. It enters the same when waxing, perhaps allowing for observer bias.

Image credit:
A simulation of the 2029 event. Image credit: Stellarium

Can’t wait for December? The Moon also occults the bright star Aldebaran on October 29th for Europe and North America on November 26th near Full phase… the good folks at the Virtual Telescope will carry the October event live.

Image credit:
The occultation footprint for the 2029 event. Image credit: Occult 4.1

For now, the ashen light of Venus remains an intriguing mystery. Perhaps, an airborne observation could extend the appearance of Venus during an occultation, or maybe the recently announced Discovery-class mission to Venus could observe the night side of the planet for an Earthly glow… if nothing else, it’s simply amazing to watch the two brightest objects in the nighttime sky come together.

Lunar ‘Fountain of Youth’ Challenge / Mercury Returns with Gusto

16th century Spanish explorer Juan Ponce de León looked and looked but never did find the Fountain of Youth, a spring rumored to restore one’s youth if you bathed or drank from its waters.  If he had, I might have interviewed him for this story.

Sunday night, another symbol of youth beckons skywatchers the world over. A fresh-faced, day-young crescent Moon will hang in the western sky in the company of the planets Mars and Mercury. While I can’t promise a wrinkle-free life, sighting it may send a tingle down your spine reminding you of why you fell in love with astronomy in the first place. 

Look low in the west-northwest sky Sunday evening April 19 to spot the day-old crescent Moon alongside Mars and returning Mercury. Source: Stellarium
Look low in the west-northwest sky Sunday evening April 19 to spot the day-old crescent Moon alongside Mars and returning Mercury. Brilliant Venus will help you get oriented. This map shows the sky around 40 minutes after sunset but you can start as early as 30 minutes especially if you’re using binoculars. Source: Stellarium

The Moon reaches New Moon phase on Saturday, April 18 during the early afternoon for North and South America. By sunset Sunday, the fragile crescent will be about 29 hours old as seen from the East Coast, 30 for the Midwest, 31 for the mountain states and 32 hours for the West Coast. Depending on where you live, the Moon will hover some 5-7° (three fingers held at arm’s length) above the northwestern horizon 40 minutes after sunset. To make sure you see it, find a location with a wide-open view to the west-northwest.

Earthshine gets easier to see once the Moon moves a little further from the Sun and into a dark sky. Our planet provides enough light to spot some of the larger craters. Credit: Bob King
Earthshine gets easier to see as the Moon moves further from the Sun and the crescent fills out a bit. Our planet provides enough light to spot some of the larger craters. Credit: Bob King

While the crescent is illuminated by direct sunlight, you’ll also see the full outline of the Moon thanks to earthshine. Sunlight reflected off Earth’s globe faintly illuminates the portion of the Moon not lit by the Sun. Because it’s twice-reflected, the light looks more like twilight. Ghostly. Binoculars will help you see it best.

Now that you’ve found the dainty crescent, slide your eyes (or binoculars) to the right. That pinpoint of light just a few degrees away is Mars, a planet that’s lingered in the evening sky longer than you’ve promised to clean out the garage. The Red Planet shone brightly at opposition last April but has since faded and will soon be in conjunction with the Sun. Look for it to return bigger and brighter next May when it’s once again at opposition.

Diagram showing Mercury's position and approximate altitude above the horizon during the current apparition. Also shown are the planet's phases, which are visible in a telescope. Credit: Stellarium, Bob King
Diagram showing Mercury’s position and approximate altitude above the horizon during the current apparition. Also shown are the planet’s changing phases, which are visible in a telescope. Credit: Stellarium, Bob King

To complete the challenge, you’ll have to look even lower in the west to spot Mercury. Although brighter than Vega, it’s only 3° high 40 minutes after sunset Sunday. Its low altitude makes it Mercury is only just returning to the evening sky in what will become its best appearance at dusk for northern hemisphere skywatchers in 2015.

As an inner planet, Mercury goes through phases just like Venus and the Moon. We see it as everything from a crescent to a "full moon" as it angle to the Sun changes during its 88-day orbit. Credit: ESO
As an inner planet, Mercury goes through phases just like Venus and the Moon. We see it morph from crescent to “full moon” as its angle to the Sun changes during its revolution of the Sun. Credit: ESO

Right now, because of altitude, the planet’s a test of your sky and observing chops, but let the Moon be your guide on Sunday and you might be surprised. In the next couple weeks, Mercury vaults from the horizon, becoming easier and easier to see.  Greatest elongation east of the Sun occurs on the evening of May 6. Although the planet will be highest at dusk on that date, it will have faded from magnitude -0.5 to +1.2. By the time it leaves the scene in late May, it will become very tricky to spot at magnitude +3.5.

Mercury’s a bit different from Venus, which is brighter in its crescent phase and faintest at “full”. Mercury’s considerably smaller than Venus and farther from the Earth, causing it to appear brightest around full phase and faintest when a crescent, even though both planets are largest and closest to us when seen as crescents.

Not to be outdone by Venus earlier this month, Mercury passes a few degrees south of the Pleiades star cluster on April 29. The map shows the sky facing northwest about 50 minutes after sunset. Source: Stellarium
Not to be outdone by the Venus-Pleiades conjunction earlier this month, Mercury passes a few degrees south of the star cluster on April 29. The map shows the sky facing northwest about 50 minutes after sunset. Source: Stellarium

Venus makes up for its dwindling girth by its size and close proximity to Earth. It also doesn’t hurt that it’s covered in highly reflective clouds. Venus reflects about 70% of the light it receives from the Sun; Mercury’s a dark world and gives back just 7%. That’s dingier than the asphalt-toned Moon!

Good luck in your mercurial quest. We’d love to hear your personal stories of the hunt — just click on Comments.

A Triple Occultation Bonanza: A Challenging Series of Occultations This Weekend and More

Got clear skies? This week’s equinox means the return of astronomical Fall for northern hemisphere observers and a slow but steady return of longer nights afterwards. And as the Moon returns to the evening skies, all eyes turn to the astronomical action transpiring low to the southwest at dusk.

Three planets and two “occasional” planets lie along the Moon’s apparent path this coming weekend: Mars, Saturn, Mercury and the tiny worldlets of 4 Vesta and 1 Ceres. Discovered in the early 19th century, Ceres and Vesta enjoyed planetary status initially before being relegated to the realm of the asteroids, only to make a brief comeback in 2006 before once again being purged along with Pluto to dwarf planet status.

Credit: Stellarium.
The Moon approaches Saturn on the evening of September 28th as seen from latitude 30 degrees north. Credit: Stellarium.

On Sunday September 28th, the four day old Moon will actually occult (pass in front of) Saturn, Ceres, and Vesta in quick succession. The Saturn occultation is part of a series of 12 in an ongoing cycle. This particular occultation is best for Hawaiian-based observers on the evening of September 28th. Astute observers will recall that Ceres and Vesta fit in the same 15’ field of view earlier this summer. Both are now over six degrees apart and slowly widening. Unfortunately, there is no location worldwide where it’s possible to see all (or two) of these objects occulted simultaneously. The best spots for catching the occultations of +7.8 magnitude Vesta and +9.0 magnitude Ceres are from the Horn of Africa and just off of the Chilean coast of South America, respectively. The rest of us will see a close but photogenic conjunction of the trio and the Moon. To our knowledge, an occultation of Ceres or Vesta by the dark limb of the Moon has yet to be recorded. Vesta also reaches perihelion this week on September 23rd at 4:00 UT, about 2.2 astronomical units from the Sun and 2.6 A.U.s from Earth.

Credit: Andrew Symes
4 Vesta and 1 Ceres share the same field of view this past summer. Credit: Andrew Symes @FailedProtostar.

The reappearance of the Moon in the evening skies is also a great time to try your hand (or eyes) at the fine visual athletic sport of waxing crescent moon-spotting. The Moon passes New phase marking the start of lunation 1135 on Wednesday, September 24th at 6:12 UT/2:12 AM EDT. First sighting opportunities will occur over the South Pacific on the same evening, with worldwide opportunities to spy the razor-thin Moon low to the west the following night. Aim your binoculars at the Moon and sweep about three degrees to the south, and you’ll spy Mercury and the bright star Spica just over a degree apart.

This week’s New Moon is also notable for marking the celebration of Rosh Hashanah, and the beginning of the Jewish year 5775 A.M. at sundown on Wednesday. The Jewish calendar is a hybrid luni-solar one, and inserted an embolismic or intercalculary month earlier this spring to stay in sync with the solar year.

Occult 4.0
The occultation footprint of Saturn. The dashed line denotes where the event occurs in the daytime, while the solid line marks where it can be seen after sunset. Created using Occult 4.1.0.

The Moon also visits Mars and Antares on September 29th. The ruddy pair sits just three degrees apart on the 28th, making an interesting study in contrast. Which one looks “redder” to you? Antares was actually named by the Greeks to refer to it as the “equal to,” “pseudo,” or “anti-Mars…” Mars can take on anything from a yellowish to pumpkin orange appearance, depending on the current amount of dust suspended in its atmosphere. The action around Mars is also heating up, as NASA’s MAVEN spacecraft just arrived in orbit around the Red Planet and India’s Mars Orbiter is set to join it this week… and all as Comet A1 Siding Spring makes a close pass on October 19th!

And speaking of spacecraft, another news maker is photo-bombing the dusk scene, although of course it’s much too faint to see. NASA’s Dawn mission is en route to enter orbit around Ceres in early 2015, and currently lies near R.A. 15h 02’ and declination -14 37’, just over a degree from Ceres as seen from Earth. The Moon will briefly “occult” the Dawn spacecraft as well on September 28th.

Credit: Starry Night
Crowded skies: the Moon approaching Saturn, 4 Vesta, 1 Ceres and the Dawn spacecraft on the 28th. The red arrow shows the direction of the Moon. Created using Starry Night Education Software.

Be sure to keep an eye out for Earthshine on the dark limb of the Moon as our natural neighbor in space waxes from crescent to First Quarter. What you’re seeing is the reflection of sunlight from the gibbous Earth illuminating the lunar plains on the nighttime side of the Moon. This effect gives the Moon a dramatic 3D appearance and can vary depending on the amount of cloud and snow cover currently facing the Moon.

Such a close trio of conjunctions raises the question: when was the last time the Moon covered two or more planets at once? Well, on April 23rd 1998, the Moon actually occulted Venus and Jupiter at the same time, although you had to journey to Ascension Island to witness it!

Credit: Stellarium
The waning crescent Moon approaches Jupiter and Venus on April 23rd, 1998. Credit: Stellarium.

Such bizarre conjunctions are extremely rare. You need a close pairing of less than half a degree for two bright objects to be covered by the Moon at the same time. And often, such conjunctions occur too close to the Sun for observation. A great consequence of such passages, however, is that it can result in a “smiley-face” conjunction, such as the one that occurs on October 15th, 2036:

Credit: Starry Night.
Smile: A close pass of the Moon, Saturn, and Regulus in 2036. Credit: Stellarium.

Such an occurrence lends credence to a certain sense of cosmic irony in the universe.

And be sure to keep an eye on the Moon, as eclipse season 2 of 2 for 2014 kicks off next week, with the second total lunar eclipse of the year visible from North America.

More to come!

Observing Alert: Watch the Moon Cross the Hyades This Week

A photogenic grouping greets evening sky watchers this week providing a fine teaser leading up to a spectacular eclipse.

On the evening of Thursday, April 3rd headed into the morning of the 4th, the waxing crescent Moon crosses in front of the Hyades open star cluster.  This is the V-shaped asterism that marks the head on Taurus the Bull, highlighted by the brilliant foreground star Aldebaran as the bull’s “eye”.  Viewers across North America will have a ring-side seat to this “bull-fight” as the 20% illuminated Moon stampedes over several members of the Hyades in its path.

Starry Night
The passage of the Moon through the Hyades over a three hour span on the night of April 3rd (April 4th in Universal Time) comparing the North American locales of Tampa, Florida and Seattle, Washington. (Credit: Starry Night Education Software).

The brightest stars to be occulted are the Delta Tauri trio of stars ranging in magnitudes from +3.8 (Delta Tauri^1) to +4.8(2) and +4.3(3). Such occlusions – known in astronomy as occultations – are fun to watch, and can reveal the existence of close binary companions as they wink out behind the lunar limb. Several dozen occultations of stars brighter than +5th magnitude by the Moon happen each year, and the best events occur when the Moon is waxing and the stars disappear against its dark leading edge. We recently caught one such event last month when the Moon occulted the bright star Lambda Geminorum:

We are currently seeing the Moon cross the Hyades during every lunation until the year 2020, though it’s a particularly favorable time to catch the event in April 2014 as the Moon is a slender crescent. Notice that you can just make out the dark limb of the Moon with the naked eye? What you’re seeing is termed Earthshine, and that’s just what it is: the nighttime side of the Moon being illuminated by sunlight that is reflected off of the Earth. Standing on the Earthward side of the Moon, an observer would see a waning gibbous Earth about two degrees across. Yutu has a great view!

Credit Occult 4.0
The occultation footprint for Delta Tauri^1. Credit: Occult 4.0

The Moon will cross its descending node where its apparent path intersects the ecliptic on April 1st (no joke, we swear) at 2:30 Universal Time or 10:30 PM EDT on March 31st. The next nodal crossing now occurs in just two weeks, and the Earth’s shadow will be there to greet the Moon on the morning of April 15th in the first of four total lunar eclipses that span 2014 and 2015. The month of April also sees the Moon’s orbit at its least eccentric, a time at which perigee – the Moon’s closest point to Earth – is at its most distant and apogee – its farthest point – is at its closest. This currently happens near the equinoxes, through the nodes slowly travel across the ecliptic completing one revolution every 18.6 years. Perigee can vary from 356,400 to 370,400 kilometres, and apogee can span a distance from 404,000 to 406,700 kilometres.

Stellarium
Looking west from the US SE at about 10PM local on the evening of April 3rd. Credit: Stellarium.

We’re also headed towards a “shallow year” in 2015 when the Moon has the least variability in respect to its declination. This trend will then reverse, climaxing with a “Long Nights Moon” riding high in the sky in 2025, which last occurred in 2006. The Moon will inch ever closer to Aldebaran on every successive lunation now, and begins a series of occultations of Aldebaran on January 29th, 2015 through the end of 2018. Occultations of Aldebaran always occur near these shallow years, and will be followed by a cycle of occultations of Regulus starting in 2017. We caught an excellent daytime occultation of Aldebaran by the Moon from North Pole, Alaska during the last cycle in the late 1990s.

Photos by Author
The Moon passing between the Hyades and Pleiades in 2011 with Earthshine highlighted. Photos by author.

Now for the wow factor. Our Moon is 3,474 kilometres across and located just over one light second away. The Hyades star cluster covers about 6 ½ degrees of sky – about 7 times the size of the Full Moon – but is the closest open cluster to the Earth at 153 light years distant and has a core diameter of about 18 light years across. As mentioned previous, Aldebaran isn’t physically associated with the Hyades, but is merely located in the same direction at 65 light years distant.

The Hyades star cluster also provided early 20th astronomers with an excellent study in galactic motion. At an estimated 625 million years in age, the Hyades are slowly getting disbanded and strewn about the Milky Way galaxy in a process known as evaporation. The Hyades are also part of a larger stellar incorporation known as the Taurus Moving Cluster. Moving at an average of about 43 kilometres a second, the members of the Hyades are receding from us towards a divergent point near the bright star Betelgeuse in the shoulder of Orion. 50 million years hence, the Hyades will be invisible to the naked eye as seen from Earth, looking like a non-descript open cluster and providing a much smaller target for the Moon to occult at 20’ across. Astronomer Lewis Boss was the first to plot the motion of the Hyades through space in 1908, and the cluster stands as an essential rung on the cosmic distance ladder, with agreeing measurements independently made by both Hubble and Hipparcos and soon to be refined by Gaia.

Photographing and documenting this week’s passage of our Moon across the Hyades is easy with a DSLR camera: don’t be afraid to vary those ISO and shutter speeds to get the mix of the brilliant crescent Moon, the fainter earthshine, and background stars just right. The more adventurous might want to try actually catching the numerous occultations of bright stars on video. And U.S. and Canadian west coast observers are well placed to catch the Moon cross right though the core of the Hyades… a video animation of the event is not out of the question!

And from there, the Moon heads on to its date with destiny and a fine total lunar eclipse on April 15th which favors North American longitudes. We’ll be back later this week with our complete and comprehensive eclipse guide!

Astrophotos: Sun Halo, Crescent Moon and Earthshine

Here’s a few great astrophotos for today! Astrophotographer César Cantú from the Chilidog Observatory in Monterrey, Mexico captured this stunning halo around the Sun on March 2, 2014. A solar halo is an optical phenomenon produced by ice crystals creating colored or white arcs and spots in the sky. Conditions in the atmosphere have to be just right, with moisture or ice crystals creating a “rainbow” effect around the Sun. Sometimes the halos surround the Sun completely, other times, they appear as arcs around the Sun creating what is known as sundogs. Basically, sunlight is reflecting off moisture in the atmosphere.

Ice crystals in Earth’s atmosphere can also cause rings around the Moon, and moondogs and even Venus “pillars.”

But make sure you look at the crescent Moon tonight — if you’ve missed seeing the thin crescent the past two evenings, tonight it will still be only 11% illuminated (according to Universe Today’s Phases of the Moon app!). Tonight you still might have the chance to see a little Earthshine — reflected Earthlight visible on the Moon’s night side.

See some great crescent Moon and Earthshine images below!

This image comes from one of our “regulars,” John Chumack, who says, “If you have clear skies, go out again tonight (03-03-2014) and look West between 7:00pm and 8:00pm EST, you will see the crescent Moon with Earthshine!”

Also, just another note from John: between 7:00 pm and 8:00 pm the Planet Uranus is 7.5 degrees below the Crescent Moon just after Sunset, but you will not see Uranus until it gets dark enough. You will need a telescope or binoculars to easily view Uranus at Magnitude 5.9, shortly after 8:15pm Uranus will set in the west and then the Moon follows shortly after that.

The young thin Crescent Moon with Earthshine was hanging low in the west near Tampa, Florida on March 2, 2014. Credit and copyright: John Chumack.
The young thin Crescent Moon with Earthshine was hanging low in the west near Tampa, Florida on March 2, 2014. Credit and copyright: John Chumack.
The Crescent Moon at 2.45 days old on March 3, 2014. Credit and copyright: James Lennie.
The Crescent Moon at 2.45 days old on March 3, 2014. Credit and copyright: James Lennie.
Crescent Moon with Earthshine on March 3, 2014. Credit and copyright: Raymond Gilchrist.
Crescent Moon with Earthshine on March 3, 2014. Credit and copyright: Raymond Gilchrist.

Check out more great images on our Flickr group page.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Now is a Great Time to Try Seeing Venus in the Daytime Sky

Here’s a feat of visual athletics to amaze your friends with this week. During your daily routine, you may have noticed the daytime Moon hanging against the azure blue sky. But did you know that, with careful practice and a little planning, you can see Venus in the broad daylight as well?

This week offers a great chance to try, using the daytime Moon as a guide. We recently wrote about the unique circumstances of this season’s evening apparition of the planet Venus. On Friday, December 6th, Venus will reach a maximum brilliancy of magnitude -4.7, over 16 times brighter than Sirius, the brightest star in the sky. And just one evening prior on Thursday December 5th, the 3-day old crescent Moon passes eight degrees above it, slightly closer together than the span of your palm held at arm’s length.

Created using Starry Night Education software.
The orientation of Venus and the Moon on Thursday, December 5th as it crosses the local meridian at 3PM EST. Created using Starry Night Education software.

The Moon will thus make an excellent guide to spot Venus in the broad daylight. It’s even possible to nab the pair with a camera, if you can gauge the sky conditions and tweak the manual settings of your DSLR just right.

The best time to attempt this feat on Thursday will be when the pair transits the local meridian due south of your location. Deep in the southern hemisphere, the Moon and Venus will appear to transit to the north.  This occurs right around 3:00 PM local. The fingernail Moon will be easy to spot, then simply begin scanning the sky to the south of it with the naked eye or binoculars for the brilliant diamond of Venus. High contrast and blocking the Sun out of view is key — Venus will easily pop right out against a clear deep blue sky, but it may disappear all together against a washed out white background.

The Moon will be at a 10% illuminated phase on Thursday, while Venus presents a slimming crescent at 27% illumination. Though tougher to find, Venus is actually brighter than the Moon in terms of albedo… expand it up to the apparent size of a Full Moon and it would be over four times as bright!

Photo by author.
Church and Venus as seen from Westgate River Ranch, Florida. Photo by author.

You’ll be amazed what an easy catch Venus is in the daytime once you’ve spotted it — we’ve included views of Venus in the daytime when visible during sidewalk star parties for years.

Due to its brilliancy, Venus has also been implicated in more UFO sightings than any other planet, and even caused the Indian Army to mistake the pair for snooping Chinese drones earlier this year when it was in conjunction with the planet Jupiter. A daytime sighting of the planet Venus near the Moon was almost certainly the “curious star” reported by startled villagers observing from Saint-Denis, France on January 13th, 1589.

Venus can also cast a noticeable shadow near greatest brilliancy, an effect that can be discerned against a fresh snow-covered landscape. Can’t see it? Take a time exposure shot of the ground and you may just be able to tease it out… but hurry, as the waxing Moon will soon be dominating the early evening night sky show!

Another phenomenon to watch for this week on the face of the waxing crescent Moon is known as Earthshine. Can you just make out the dark limb of the Moon? This is caused by the Earth acting as a “mirror” reflecting sunlight back at the nighttime side of the Moon. And don’t forget, China’s Chang’e-3 lander plus rover will be landing on the lunar surface in the Sinus Iridum region later this month on December 14th, the first lunar soft landing since 1976!

The imaginary line of the ecliptic currently bisects the Moon and Venus, as Venus sits at an extreme southern point 2.5 degrees below the ecliptic — in fact, 2013 the farthest south it’s been since 1930 — and the Moon sits over four degrees above the ecliptic this week. The Moon also reached another notable point today, as it reached its most northern “southerly point” for 2013 at a declination of -19.6 degrees. The Moon’s apparent path is headed for a “shallow year” in 2015, after which it’ll begin to slowly widen over its 18.6 year cycle out to a maximum declination range in 2024. It’s a weird but true fact that the motion of the Moon is not fixed to the Earth’s equatorial plane, but to the path of our orbit traced out by the ecliptic, to which its orbit is tilted an average of five degrees.

Stellarium
The view looking west tonight from latitude 30 degrees north. Created using Stellarium.

And speaking of the Moon, there’s another fun naked-eye feat you can attempt tonight. At dusk, U.S. East Coast observers might just be able to pick up the razor thin crescent Moon hanging low to the West, only 23 hours past New. Begin scanning the western horizon about 10 minutes after sunset. Can you see it with binoculars? The naked eye? Chances get better for sighting the slim crescent Moon the farther west you go. North American observers will have a chance at a “personal best” during next lunation in the first few days of 2014… more to come!

Be sure to send those Venus-Moon conjunction pics in to Universe Today!

Astrophoto: The Macro Moon

This very creative self-portrait by astrophotographer Miguel Claro shows what appears to be the photographer taking a ‘macro’ closeup of the crescent Moon! But there is a lot more going on in this image. The crescent Moon has just 3% of the disc illuminated by the Sun, but there is a stunningly bright Earthshine effect visible. This image was taken on May 11, 2013, so there is a conjunction between the Moon and Jupiter (the brightest star in the image). Venus was also in conjunction, but at the time this image was taken, it was covered by the cloudy band low on the horizon.

Another shot below:

A silhouette of photographer Miguel Claro along with the crescent Moon and Jupiter. Credit and copyright: Miguel Claro.
A silhouette of photographer Miguel Claro along with the crescent Moon and Jupiter. Credit and copyright: Miguel Claro.

Images taken from Capuchos, Almada, Portugal with a Canon 50D – ISO400; Exp. 2sec. F/4; 35mm, on May 11, 2013 at 21:41 and 21:43. Enjoy more of Claro’s images at his website.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Is There Life on Earth?

[/caption]

It may seem like a silly question — of course there’s life on Earth — but what if we didn’t know that? What if we were looking at Earth from another vantage point, from another planet in another star system, perhaps? Would we be able to discern then if Earth were in fact teeming with life? All we’d have to go on would be the tiniest bit of light reflected off Earth, nearly lost in the intense glare of the Sun.

Researchers have found that the secret is knowing what kind of light to look for. And they discovered this with a little help from the Moon.

How Earthshine works. (ESO/L. Calçada)

By using Earthshine — sunlight light reflected off Earth onto the Moon — astronomers with the European Southern Observatory have been able to discern variations that correlate with identifying factors of our planet as being a happy home for life.

In observations made with ESO’s Very Large Telescope (VLT), the presence of oceans, clouds, atmospheric gases and even plants could be detected in the reflected Earthshine.

The breakthrough method was the use of spectropolarimetry, which measures polarized light reflected from Earth. Like polarized sunglasses are able to filter out reflected glare to allow you to see clearer, spectropolarimetry can focus on light reflected off a planet, allowing scientists to more clearly identify important biological signatures.

“The light from a distant exoplanet is overwhelmed by the glare of the host star, so it’s very difficult to analyze — a bit like trying to study a grain of dust beside a powerful light bulb,” said Stefano Bagnulo of the Armagh Observatory, Northern Ireland, and co-author of the study. “But the light reflected by a planet is polarized, while the light from the host star is not. So polarimetric techniques help us to pick out the faint reflected light of an exoplanet from the dazzling starlight.”

Since we have fairly reliable proof that life does in fact exist on Earth, this provides astronomers with a process and a benchmark for locating evidence of life on other distant worlds — life as we know it, anyway.

Read more on the ESO website here.

Main image credit: ESO/B. Tafreshi/TWAN (twanight.org). This research was presented in a paper, “Biosignatures as revealed by spectropolarimetry of Earthshine”, by M. Sterzik et al. to appear in the journal Nature on 1st March 2012. The team is composed of Michael F. Sterzik (ESO, Chile), Stefano Bagnulo (Armagh Observatory, Northern Ireland, UK) and Enric Palle (Instituto de Astrofisica de Canarias, Tenerife, Spain).

Life in the Universe, Reflected by the Moon

[/caption]

Earthshine – a poetic, fanciful word for the soft, faint glow on the Moon when the light from the Sun is reflected from the Earth’s surface, onto the dark part of the Moon. And as unlikely as it might seem, astronomers have used Earthshine to verify there’s life in the Universe: Us. While we already know about life on our own world, this technique validates that faint light from distant worlds could also be used to find potential alien life.

“We used a trick called earthshine observation to look at the Earth as if it were an exoplanet,” said Michael Sterzik from the European Southern Observatory. “The Sun shines on the Earth and this light is reflected back to the surface of the Moon. The lunar surface acts as a giant mirror and reflects the Earth’s light back to us — and this is what we have observed with the VLT (Very Large Telescope).”

Sterzik and his team said the fingerprints of life, or biosignatures, are hard to find with conventional methods, but they have now pioneered a new approach that is more sensitive. The astronomers used Earth as a benchmark for the future search for life on planets beyond our Solar System. They can analyze the faint planetshine light to look for indicators, such as certain combinations of gases in the atmosphere – as they found looking at earthshine – to find telltale signs of organic life.

Looking at earthshine, they found strong bio-signatures such as molecular oxygen and methane, as well as the presence of a ‘red edge’ caused by surface vegetation.

By observing earthshine astronomers can study the properties of light reflected from Earth as if it were an exoplanet and search for signs of life. The reflected light is also strongly polarised and studying the polarisation as well as the intensity at different colours allows for much more sensitive tests for the presence of life. Credit: ESO/L. Calçada

Instead of just looking at the planet’s reflected light, astronomers can also use spectropolarimetry, which looks at the polarization of the light. Using this approach, the biosignatures in the reflected light from Earth show up very strongly.

“The light from a distant exoplanet is overwhelmed by the glare of the host star, so it’s very difficult to analyze — a bit like trying to study a grain of dust beside a powerful light bulb,” said co-author Stefano Bagnulo from Armagh Observatory in Northern Ireland. “But the light reflected by a planet is polarised, while the light from the host star is not. So polarimetric techniques help us to pick out the faint reflected light of an exoplanet from the dazzling starlight.”

By looking at earthshine, the team was able to deduce that the Earth’s atmosphere is partly cloudy, that part of its surface is covered by oceans and — crucially — that there is vegetation present. They could even detect changes in the cloud cover and amount of vegetation at different times as different parts of the Earth reflected light towards the Moon.

“These observations allow us to determine the fractional contribution of clouds and ocean surface, and are sensitive to Spectropolarimetry unveils strong biosignatures, visible areas of vegetation as small as 10%,” the team wrote in their paper.

“Finding life outside the Solar System depends on two things: whether this life exists in the first place, and having the technical capability to detect it,” said co-author Enric Palle from Instituto de Astrofisica de Canarias, Tenerife, Spain. “This work is an important step towards reaching that capability.”

“Spectropolarimetry may ultimately tell us if simple plant life — based on photosynthetic processes — has emerged elsewhere in the Universe,” said Sterzik. “But we are certainly not looking for little green men or evidence of intelligent life.”

The astronomers said that future telescopes such as the E-ELT (the European Extremely Large Telescope), could provide more detail about the type of life beyond planets that may exists on another world.

Read the team’s paper, (pdf) which was published in Nature.

Source: ESO