New Technique for Spotting Dyson Rings Unveiled.

Artist's impression of a Dyson Sphere. The construction of such a massive engineering structure would create a technosignature that could be detected by humanity. Credit: SentientDevelopments.com/Eburacum45
Artist's impression of a Dyson Sphere. The construction of such a massive engineering structure would create a technosignature that could be detected by humanity. Credit: SentientDevelopments.com/Eburacum45

Dyson spheres and rings have always held a special fascination for me. The concept is simple, build a great big structure either as a sphere or ring to harness the energy from a star. Dyson rings are far more simple and feasible to construct and in a recent paper, a team of scientists explore how we might detect them by analysing the light from distant stars. The team suggests they might be able to detect Dyson rings around pulsars using their new technique.

Continue reading “New Technique for Spotting Dyson Rings Unveiled.”

Will Advanced Civilizations Build Habitable Planets or Dyson Spheres

Artist's impression of the terraforming of Mars, from its current state to a livable world. Credit: Daein Ballard
Artist's impression of the terraforming of Mars, from its current state to a livable world. Credit: Daein Ballard

If there are alien civilizations in the Universe, some of them could be super advanced. So advanced that they can rip apart planets and create vast shells surrounding a star to capture all its energy. These Dyson spheres should be detectable by modern telescopes. Occasionally astronomers find an object that resembles such an alien megastructure, but so far, they’ve all turned out to be natural objects. As best we can tell, there are no Dyson spheres out there.

Continue reading “Will Advanced Civilizations Build Habitable Planets or Dyson Spheres”

That’s No Planet. Detecting Transiting Megastructures

One of the easiest ways to find exoplanets is using the transit method. It relies upon monitoring the brightness of a star which will then dim as a planet passes in front of it. It is of course possible that other objects could pass between us and a star; perhaps binary planets, tidally distorted planets, exocomets and, ready for it…. alien megastructures! A transit simulator has been created by a team of researchers and it can predict the brightness change from different transiting objects, even Dyson Swarms in construction. 

Continue reading “That’s No Planet. Detecting Transiting Megastructures”

There’s Another, More Boring Explanation for those Dyson Sphere Candidate Stars

WISE images of dust-obscured galaxies

Dyson Spheres have been a tantalising digression in the hunt for alien intelligence. Just recently seven stars have been identified as potential candidates with most of their radiation given off in the infrared wavelengths. Potentially this is the signature of heat from a matrix of spacecraft around the star but alas, a new paper has another slightly less exciting explanation; dust obscured galaxies. 

Continue reading “There’s Another, More Boring Explanation for those Dyson Sphere Candidate Stars”

If There are Dyson Spheres Around White Dwarfs, We Should be Able to Detect Them

Searching for Dyson spheres, rings, or swarms remains a preoccupation of many astronomers.  If there are any out there, they will eventually be found, and the person or research team to do so will go down in history for making one of the most momentous discoveries in the history of humanity.  If you’re interested in claiming that accolade for yourself, an excellent place to look may be around white dwarfs.  At least, that’s the theory put forward in a new paper by Benjamin Zuckerman, a now-retired professor of astrophysics at UCLA.  

Continue reading “If There are Dyson Spheres Around White Dwarfs, We Should be Able to Detect Them”

Next Generation Telescopes Could Search for Intelligent Civilizations Directly

An artist's illustration of the LUVOIR-A telescope concept. There are two conceptual designs for LUVOIR, one with an 8 meter mirror and one with a 15 meter mirror. Image Credit: NASA

We’re still in the early days of searching for life elsewhere. The Perseverance rover is on its way to a paleo-delta on Mars to look for fossilized signs of ancient bacterial life. SETI’s been watching the sky with radio dishes, listening for signals from distant worlds. Our telescopes are beginning to scan the atmospheres of distant exoplanets for biosignatures.

Soon we’ll take another step forward in the search when new, powerful telescopes begin to search not just for life but for other civilizations.

Continue reading “Next Generation Telescopes Could Search for Intelligent Civilizations Directly”

Advanced Civilizations Could be Using Dyson Spheres to Collect Energy From Black Holes. Here’s how we Could Detect Them

Black holes are more than just massive objects that swallow everything around them – they’re also one of the universe’s biggest and most stable energy sources.  That would make them invaluable to the type of civilization that needs huge amounts of power, such as a Type II Kardashev civilization.  But to harness all of that power, the civilization would have to encircle the entire black hole with something that could capture the power it is emitting. 

Continue reading “Advanced Civilizations Could be Using Dyson Spheres to Collect Energy From Black Holes. Here’s how we Could Detect Them”

Advanced Civilizations Could be Communicating with Neutrino Beams. Transmitted by Clouds of Satellites Around Neutron Stars or Black Holes

One of the Daya Bay detectors. Roy Kaltschmidt, Lawrence Berkeley National Laboratory

In 1960, famed theoretical physicist Freeman Dyson made a radical proposal. In a paper titled “Search for Artificial Stellar Sources of Infrared Radiation” he suggested that advanced extra-terrestrial intelligences (ETIs) could be found by looking for signs of artificial structures so large, they encompassed entire star systems (aka. megastructures). Since then, many scientists have come up with their own ideas for possible megastructures.

Like Dyson’s proposed Sphere, these ideas were suggested as a way of giving scientists engaged in the Search for Extra-Terrestrial Intelligence (SETI) something to look for. Adding to this fascinating field, Dr. Albert Jackson of the Houston-based technology company Triton Systems recently released a study where he proposed how an advanced ETI could use rely on a neutron star or black hole to focus neutrino beams to create a beacon.

Continue reading “Advanced Civilizations Could be Communicating with Neutrino Beams. Transmitted by Clouds of Satellites Around Neutron Stars or Black Holes”

The Search Is On For Alien Signals Around Tabby’s Star

Credit: UC Berkeley


There’s a remote chance that inexplicable light variations in a star in the Northern Cross may be caused by the works of an alien civilization.

1,480 light years from Earth twinkles one of the greatest mysteries of recent times.  There in the constellation Cygnus the Swan, you’ll find a dim, ordinary-looking point of light with an innocent sounding name — Tabby’s Star.  Named for Louisiana State University astronomer  Tabetha Boyajian, who was the lead author on a paper about its behavior, this star has so confounded astronomers with its unpredictable ups and downs in its brightness, they’ve gone to war on the object, drilling down on it with everything from the Hubble to the monster 393.7-inch (10-meter) Keck Telescope in Hawaii. Continue reading “The Search Is On For Alien Signals Around Tabby’s Star”

Tabby’s Star Megastructure Mystery Continues To Intrigue

Artist's concept of KIC 8462852, which has experienced unusual changes in luminosity over the past few years. Credit: NASA, JPL-Caltech

Last fall, astronomers were surprised when the Kepler mission reported some anomalous readings from KIC 8462852 (aka. Tabby’s Star). After noticing a strange and sudden drop in brightness, speculation began as to what could be causing it – with some going so far as to suggest that it was an alien megastructure. Naturally, the speculation didn’t last long, as further observations revealed no signs of intelligent life or artificial structures.

But the mystery of the strange dimming has not gone away. What’s more, in a paper posted this past Friday to arXiv, Benjamin T. Montet and Joshua D. Simon (astronomers from the Cahill Center for Astronomy and Astrophysics at Caltech and the Carnegie Institute of Science, respectively) have shown how an analysis of the star’s long-term behavior has only deepened the mystery further.

To recap, dips in brightness are quite common when observing distant stars. In fact, this is one of the primary techniques employed by the Kepler mission and other telescopes to determine if planets are orbiting a star (known as Transit Method). However, the “light curve” of Tabby’s Star – named after the lead author of the study that first detailed the phenomena (Tabetha S. Boyajian) – was particularly pronounced and unusual.

Freeman Dyson theorized that eventually, a civilization would be able to build a megastructure around its star to capture all its energy. Credit: SentientDevelopments.com
Freeman Dyson theorized that eventually, a civilization would be able to build a megastructure around its star to capture all its energy. Credit: SentientDevelopments.com

According to the study, the star would experience a ~20% dip in brightness, which would last for between 5 and 80 days. This was not consistent with a transitting planet, and Boyajian and her colleagues hypothesized that it was due to a swarm of cold, dusty comet fragments in a highly eccentric orbit accounted for the dimming.

However, others speculated that it could be the result of an alien megastructure known as Dyson Sphere (or Swarm), a series of structures that encompass a star in whole or in part. However, the SETI Institute quickly weighed in and indicated that radio reconnaissance of KIC 8462852 found no evidence of technology-related radio signals from the star.

Other suggestions were made as well, but as Dr. Simon of the Carnegie Institute of Science explained via email, they fell short. “Because the brief dimming events identified by Boyajian et al. were unprecedented, they sparked a wide range of ideas to explain them,” he said. “So far, none of the proposals have been very compelling – in general, they can explain some of the behavior of KIC 8462852, but not all of it.”

To put the observations made last Fall into a larger context, Montet and Simon decided to examine the full-frame photometeric images of KIC 8462852 obtained by Kepler over the last four years.  What they found was that the total brightness of the star had been diminishing quite astonishingly during that time, a fact which only deepens the mystery of the star’s light curve.

Photometry of KIC8462852 as measured by Kepler data. The analysis reveals a slow but steady decrease in the star’s luminosity for about 1000 days, followed by a period of more rapid decline. Credit: Montet & Simon 2016
Photometry of KIC8462852 obtained by the Kepler mission, showing a period of more rapid decline during the later period of observation. Credit: Montet & Simon 2016

As Dr. Montet told Universe Today via email:

“Every 30 minutes, Kepler measures the brightness of 160,000 stars in its field of view (100 square degrees, or approximately as big as your hand at arm’s length). The Kepler data processing pipeline intentionally removes long-term trends, because they are hard to separate from instrumental effects and they make the search for planets harder. Once a month though, they download the full frame, so the brightness of every object in the field can be measured. From this data, we can separate the instrumental effects from astrophysical effects by seeing how the brightness of any particular star changes relative to all its neighboring stars.”

Specifically, they found that over the course of the first 1000 days of observation, the star experienced a relatively consistent drop in brightness of 0.341% ± 0.041%, which worked out to a total dimming of 0.9%. However, during the next 200 days, the star dimmed much more rapidly, with its total stellar flux dropping by more than 2%.

For the final 200 days, the star’s magnitude once again consistent and similar to what it was during the first 1000 – roughly equivalent to 0.341%. What is impressive about this is the highly anomalous nature of it, and how it only makes the star seem stranger. As Simon put it:

“Our results show that over the four years KIC 8462852 was observed by Kepler, it steadily dimmed.  For the first 2.7 years of the Kepler mission the star faded by about 0.9%.  Its brightness then decreased much faster for the next six months, declining by almost 2.5% more, for a total brightness change of around 3%.  We haven’t yet found any other Kepler stars that faded by that much over the four-year mission, or that decreased by 2.5% in six months.”

Artist's conception of the Kepler Space Telescope. Credit: NASA/JPL-Caltech
Artist’s conception of the Kepler Space Telescope. Credit: NASA/JPL-Caltech

Of the over 150,000 stars monitored by the Kepler mission, Tabby’s Starr is the only one known to exhibit this type of behavior. In addition, Monetet and Cahill compared the results they obtained to data from 193 nearby stars that had been observed by Kepler, as well as data obtained on 355 stars with similar stellar parameters.

From this rather large sampling, they found that a 0.6% change in luminosity over a four year period – which worked out to about 0.341% per year – was quite common. But none ever experienced the rapid decline of more than 2% that KIC 8462852 experienced during that 200 days interval, or the cumulative fading of 3% that it experienced overall.

Montet and Cahill looked for possible explanations, considering whether the rapid decline could be caused by a cloud of transiting circumstellar material. But whereas some phenomena can explain the long-term trend, and other the short-term trend, no one explanation can account for it all. As Montet explained:

“We propose in our paper that a cloud of gas and dust from the remnants of a planetesimal after a collision in the outer solar system of this star could explain the 2.5% dip of the star (as it passes along our line of sight). Additionally, if some clumps of matter from this collision were collided into high-eccentricity comet-like orbits, they could explain the flickering from Boyajian et al., but this model doesn’t do a nice job of explaining the long-term dimming. Other researchers are working to develop different models to explain what we see, but they’re still working on these models and haven’t submitted them for publication yet. Broadly speaking, all three effects we observe cannot be explained by any known stellar phenomenon, so it’s almost certainly the result of some material along our line of sight passing between us and the star. We just have to figure out what!”

So the question remains, what accounts for this strange dimming effect around this star? Is there yet some singular stellar phenomena that could account for it all? Or is this just the result of good timing, with astronomers being fortunate enough to see  a combination of a things at work in the same period? Hard to say, and the only way we will know for sure is to keep our eye on this strangely dimming star.

And in the meantime, will the alien enthusiasts not see this as a possible resolution to the Fermi Paradox? Most likely!

Further Reading: arXiv