Feel the Power of a Mighty Falcon 9 Blast Off Creaming Cameras

Remote cameras set up for Falcon 9 SpaceX CRS-2 launch on March 1, 2013. Credit: Ken Kremer/www.kenkremer.com

Video: Launch of SpaceX Falcon 9 on CRS-2 mission on March 1, 2013 from Cape Canaveral, Florida. Credit: Jeff Seibert/Mike Barrett/Wired4Space.com

Have you ever wondered what it would be like to be standing at the base of a launch pad when a powerful rocket ignites for the heavens?

It’s a question I get from many kids and adults.

So check out the fabulous video from my friends Mike Barrett and Jeff Seibert- and feel the power of the mighty SpaceX Falcon 9 which just rocketed to space on March 1 from Space Launch Complex 40 on Cape Canaveral Air Force Station, Florida.

Mike and Jeff set up a series of video recorders distributed around the Falcon 9 Launch Pad – for a ‘You Are There’ experience.

Well although you’d enjoy the awesome view for a split second, the deafening sound and fury would certainly drive you mad, and then leave you dead or vegetabilized and wishing you were dead.

The cameras get creamed in seconds with mud, soot and ash.

How is this view possible?

Those of us media folks lucky enough to cover rocket launches, usually get to visit around the pad the night before to view the behemoths up close – after they are rolled out and unveiled for liftoff.

We also have the opportunity to set up what’s called “remote cameras” spaced around the pad that take exquisite images and videos from just dozens of yards (meters) away – instead of from ‘safe’ distance a few miles (km) away.

The cameras can be triggered by sound or timers to capture up close sounds and sights we humans can’t survive.

After a shaky start, the SpaceX Dragon cargo resupply capsule launched atop the Falcon 9 safely docked at the International Space Station on Sunday, March 3.

The SpaceX CRS-3 flight is slated to blast off sometime during Fall 2013

Maybe we’ll see you there !

Ken Kremer

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS from Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building.  Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS from Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com
SpaceX Falcon 9 SpaceX CRS-2 rocket sits horizontal at pad before launch on March 1, 2013. Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 rocket sits horizontal at pad before launch on March 1, 2013. Credit: Ken Kremer/www.kenkremer.com
Dave Dickinson & Ken Kremer; reporting live for Universe Today from Space Launch Complex 40, Cape Canaveral Florida, on the SpaceX Falcon 9 CRS-2 mission - posing with Falcon 9 rocket in horizontal position at pad prior to March 1, 2013 liftoff. Credit: Ken Kremer/www.kenkremer.com
Dave Dickinson & Ken Kremer; reporting live for Universe Today from Space Launch Complex 40, Cape Canaveral Florida, on the SpaceX Falcon 9 CRS-2 mission – posing with Falcon 9 rocket in horizontal position at pad prior to March 1, 2013 liftoff. Rocket exhaust blasts out of the concrete Flame Trench at right. Credit: Ken Kremer/www.kenkremer.com

Berth of a Dragon after Thruster Failure Recovery Establishes American Lifeline to ISS

SpaceX Dragon berthing at ISS on March 3, 2013. Credit: NASA

Kennedy Space Center – After overcoming a frightening thruster failure that could have spelled rapid doom on the heels of a breathtakingly beautiful launch, the privately developed Dragon spacecraft successfully berthed at the International Space Station (ISS) a short while ago, at 8:56 a.m. EST Sunday morning, March 3, 2013 – thereby establishing an indispensable American Lifeline to the massive orbiting lab complex.

Hearts sank and hopes rose in the span of a few troubling hours following Friday’s (Mar. 1) flawless launch of the Dragon cargo resupply capsule atop the 15 story tall Falcon 9 rocket from Cape Canaveral Air Force Station, Florida and the initial failure of the life giving solar arrays to deploy and failure of the maneuvering thrusters to fire.

“Congrats to the @NASA/@SpaceX team. Great work getting #Dragon to the #ISS…our foothold for future exploration!” tweeted NASA Deputy Administrator Lori Garver.

Space station Expedition 34 crew members Kevin Ford and Tom Marshburn of NASA used the station’s 58 foot long Canadian supplied robotic arm to successfully grapple and capture Dragon at 5:31 a.m. Sunday as the station was flying 253 miles above northern Ukraine. See the grappling video – here.

SpaceX Dragon holding at 10m capture point. ISS crew standing by for "go" to perform grapple. Credit: NASA
SpaceX Dragon holding at 10m capture point. ISS crew standing by for “go” to perform grapple. Credit: NASA

“The vehicle’s beautiful, space is beautiful, and the Canadarm2 is beautiful too”, said station commander Kevin Ford during the operation.

The capsule pluck from free space came one day, 19 hours and 22 minutes after the mission’s launch.

Ground controllers at NASA’s Johnson Space Center in Houston then commanded the arm to install Dragon onto the Earth-facing port of the Harmony module – see schematic.

Schematic shows location of Dragon docking port for CRS-2 mission and ISS modules. Credit: NASA
Schematic shows location of Dragon docking port for CRS-2 mission and ISS modules. Credit: NASA

Originally, Dragon capture was slated only about 20 hours after launch. But that all went out the window following the serious post-launch anomalies that sent SpaceX engineers desperately scrambling to save the flight from a catastrophic finale.

The $133 million mission dubbed CRS-2 is only the 2nd contracted commercial resupply mission ever to berth at the ISS under NASA’s Commercial Resupply Services (CRS) contract. The contract is worth $1.6 Billion for at least a dozen resupply flights.

Following the forced retirement of NASA’s space shuttle orbiters in July 2011, American was left with zero capability to launch either cargo or astronauts to the primarily American ISS. NASA astronauts are 100% reliant on Russian Soyuz capsules for launch to the ISS.

Both the Falcon 9 rocket and Dragon spacecraft were designed and built by SpaceX Corporation based in Hawthorne, Calif., and are entirely American built.

The Falcon 9/Dragon commercial system restores America’s unmanned cargo resupply capability. But the time gap will be at least 3 to 5 years before American’s can again launch to the ISS aboard American rockets from American soil.

And continuing, relentless cuts to NASA’s budget are significantly increasing that human spaceflight gap and consequently forces more payments to Russia.

“Today we marked another milestone in our aggressive efforts to make sure American companies are launching resupply missions from U.S. shores,” said NASA Admisistrator Charles Bolden in a NASA statement.

“Our NASA-SpaceX team completed another successful berthing of the SpaceX Dragon cargo module to the International Space Station (ISS) following its near flawless launch on the Falcon-9 booster out of Cape Canaveral, Florida Friday morning. Launching rockets is difficult, and while the team faced some technical challenges after Dragon separation from the launch vehicle, they called upon their thorough knowledge of their systems to successfully troubleshoot and fully recover all vehicle capabilities. Dragon is now once again safely berthed to the station.”

“I was pleased to watch the launch from SpaceX’s facility in Hawthorne, CA, and I want to congratulate the SpaceX and NASA teams, who are working side by side to ensure America continues to lead the world in space.”

“Unfortunately, all of this progress could be jeopardized with the sequestration ordered by law to be signed by the President Friday evening. The sequester could further delay the restarting of human space launches from U.S. soil, push back our next generation space vehicles, hold up development of new space technologies, and jeopardize our space-based, Earth observing capabilities,” said Bolden.

ISS crew given GO for second stage capture of SpaceX Dragon with ISS on March 3, 2013.  Credit: NASA
ISS crew given GO for second stage capture of SpaceX Dragon with ISS on March 3, 2013. Credit: NASA

Dragon is loaded with about 1,268 pounds (575 kilograms) of vital supplies and provisions to support the ongoing science research by the resident six man crew, including more than a ton of vital supplies, science gear, research experiments, spare parts, food, water and clothing.

NASA says that despite the one-day docking delay, the Dragon unberthing will still be the same day as originally planned on March 25 – followed by a parachute assisted splashdown in the Pacific Ocean off the coast of Baja California.

Dragon will spend 22 days docked to the ISS. The station crew will soon open the hatch and unload all the up mass cargo and research supplies. Then they will pack the Dragon with about 2,668 pounds (1,210 kilograms) of science samples from human research, biology and biotechnology studies, physical science investigations, and education activities for return to Earth.

Canadian built robotic arm grapples SpaceX Dragon on March 3, 2013.  Credit:
Canadian built robotic arm grapples SpaceX Dragon on March 3, 2013. Credit:

Dragon is the only spacecraft in the world today capable of returning significant amounts of cargo to Earth.

Orbital Sciences Corp also won a $1.9 Billion cargo resupply contract from NASA to deliver cargo to the ISS using the firm’s new Antares rocket and Cygnus capsule.

NASA hopes the first Antares/Cygnus demonstration test flight from NASA’s Wallops Island Facility in Virginia will follow in April. Cygnus cargo transport is one way – to orbit only.

“SpaceX is proud to execute this important work for NASA, and we’re thrilled to bring this capability back to the United States,” said Gwynne Shotwell, President of SpaceX.

“Today’s launch continues SpaceX’s long-term partnership with NASA to provide reliable, safe transport of cargo to and from the station, enabling beneficial research and advancements in technology and research.”

The SpaceX CRS-3 flight is slated to blast off in September 2013.

Ken Kremer

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 ISS - shot from the roof of the Vehicle Assembly Building.  .  Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com

Dragon’s Ocean Splashdown Caps Historic Opening of New Space Era

1st picture of the Dragon spacecraft as it floats in the ocean awaiting recovery ships. Dragon splashed down successfully on May 31, 2012 at 11:42 a.m. EDT in the Pacific Ocean off the west coast of California. In a carefully timed sequence of events, dual drogue parachutes deploy at 45,000 feet to stabilize and slow the spacecraft. Full deployment of the drogues triggers the release of the main parachutes, each 116 feet in diameter, at about 10,000 feet, with the drogues detaching from the spacecraft. Main parachutes further slow the spacecraft's descent to approximately 16 to 18 feet per second. Credit: Michael Altenhofen

[/caption]

Concluding a perfectly executed and history making test flight, the first private spacecraft ever to visit and dock at the International Space Station (ISS) performed a picture perfect splashdown at 11:42 a.m. EDT (1542 GMT) today, May 31, in the Pacific Ocean, off the west coast of Baja, California, some 560 miles southwest of Los Angeles to cap the opening to a historic new Era in Space Exploration.

Dragon is the linchpin in NASA’s bold Commercial Crew and Cargo program aimed at significantly driving down the cost of transporting cargo and crews to low Earth orbit by using private commercial companies to foster competition and innovation in the free market setting of the new, post-shuttle Era of Commercial Space Transportation.

NASA aircraft were able to transmit live video of the last few minutes of the Dragon’s breathtaking descent, unfurling of the trio of parachutes and ocean splashdown – pretty much on target at 27 degrees latitude and 127 degrees west longitude.

The official mission elapsed time on landing was 9 days, 7 hours and 58 minutes.

Splashdown of the Dragon cargo craft took place barely 6 hours after departing the orbiting lab complex following detachment from the station using the station robotic arm. The ISS astronauts released the craft from the grip of the station’s robot arm at 5:49 a.m. EST (949 GMT) this morning, May 31.

Screen shot of Dragon after May 31 splashdown in the Pacific Ocean. Credit: NASA TV

The two spacecraft were soaring some 250 miles (400 km) high above the Indian Ocean east of Africa at the moment of release and departure. Altogether, Dragon spent 5 days, 16 hours and 5 minutes mated to the station.

The gumdrop shaped Dragon capsule is 4.4 meters (14.4 ft) tall, and 3.66 m (12 ft) in diameter and has an internal pressurized volume of about 350 cubic feet .

The Dragon cargo resupply capsule was built by SpaceX and is being retrieved from the ocean by a flotilla of three recovery ships. The ships reached Dragon, detached the chutes and are in the process of recovery. It will take about two days to deliver the craft to the port of Los Angeles where the most critical cargo items will be removed for quick shipment to NASA. The capsule will then be shipped to SpaceX’s McGregor,Texas facility for post-flight evaluation.

Dragon is the world’s first commercial spacecraft whose purpose is to carry supplies to and from the ISS and partially replace the cargo capabilities previously performed by NASA’s now retired fleet of space shuttle orbiters. Dragon was designed, developed and built by Hawthorne, Calif., based SpaceX Corporation, founded in 2002 by CEO and Chief Designer Elon Musk.

“This has been a fantastic day,” said Musk at a post splashdown briefing for reporters. “I want to thank NASA and the whole SpaceX team for an amazing job.”

“I’m really proud of everyone. This really couldn’t have gone better. We’re looking forward to doing lots more missions in the future and continuing to upgrade the technology and push the frontier of space transportation.”

“In baseball terminology this would be a grand slam. I am overwhelmed with joy.”

The de-orbit burn to drop Dragon out of orbit took place precisely on time at 10:51 a.m. EDT for a change in velocity of 100 m/sec about 246 miles above the Indian Ocean directly to the south of India as the craft was some 200 miles in front of the ISS.

Screen shot of Dragon after May 31 splashdown in the Pacific Ocean. Credit: NASA TV

The Draco thruster firing lasted 9 minutes and 50 seconds and sent Dragon plummeting through the Earth’s atmosphere where it had to survive extreme temperatures exceeding 3000 degrees F (1600 degrees C) before landing.

The Dragon capsule is the first US vehicle of any kind to arrive at the ISS since the July 2011 forced retirement of NASA’s Space Shuttle Program resulted in the total loss of all US capability to send cargo and humans crews to the massive orbiting outpost.

SpaceX signed a contract with NASA in 2006 to conduct twelve Falcon 9/Dragon resupply missions to carry about 44,000 pounds of cargo to the ISS at a cost of some $1.6 Billion over the next few years.

This was the third test flight of the Falcon 9 rocket and the first test flight of the Dragon in this vastly upgraded configuration with solar panels. A future variant of Dragon will eventually blast US astronauts to space and restore US crew capability – perhaps by 2017 thanks to repeated cuts to NASA’s budget.

Only four entities have ever sent a spacecraft to dock at the ISS – the United States, Russia, Japan and the European Union. SpaceX is the first commercial entity to accomplish the same feat.

The precedent setting Dragon mission has opened a new era in spaceflight by giving birth to the first fully commercial mission to the orbiting space station complex and unlocking vast new possibilities for its utilization in science and exploration.

On May 22, Dragon thundered to orbit atop a SpaceX built Falcon 9 rocket during a pre-dawn liftoff at 3:44 a.m. EDT from Space Launch Complex-40 on Cape Canaveral Air Force Station, Florida.

After a three day chase, Dragon arrived at the ISS on May 25 and was deftly berthed at an open Earth-facing port on the Harmony Node 2 module after being dramatically captured by the astronaut crew using the station’s robotic arm in a landmark event in space history as the Dragon and the ISS were passing about 251 miles above Earth. Capture was confirmed at a mission elapsed time of 3 days, 6 hours and 11 minutes and 23 seconds.

Working in tandem, NASA astronaut Don Pettit and ESA astronaut Andre Kuipers snared the Dragon craft as it was drifting in free space about 10 m (32 ft) away with the 18 m (58 ft) long Canadian robot arm at 9:56 a.m. EDT and parked the first privately built capsule to an open port at 12:02 p.m. EDT on May 25.

The astronauts opened the hatch and ‘Entered the Dragon’ for the first time a day later on May 26 and then proceeded to unload the stowed cargo and refill it for the return trip to Earth.

On this first NASA sponsored Dragon test flight to rendezvous and dock at the ISS, the cargo craft was packed with 460 kilograms (1014 lbs) of non-critical cargo including 306 kg (674 lbs) of food and crew provisions; 21 kg (46 lbs) of science experiment; 123 kg (271 lbs) prepositioned cargo bags to be used for future flights; and 10 kg (22 lbs) of assorted computer supplies and a laptop.

Dragon splashed down successfully on May 31, 2012 at 11:42 a.m. EDT in the Pacific Ocean off the west coast of California. In a carefully timed sequence of events, dual drogue parachutes deployed at 45,000 feet to stabilize and slow the spacecraft. Full deployment of the drogues triggers the release of the main parachutes, each 116 feet in diameter, at about 10,000 feet, with the drogues detaching from the spacecraft. Main parachutes further slow the spacecraft's descent to approximately 16 to 18 feet per second.

Unlike the other Russian, European and Japanese cargo freighters that service the ISS and then disintegrate on reentry, the SpaceX Dragon is uniquely equipped with a state of the art PICA-X heat shield that allows it to plunge safely through the Earth’s atmosphere and survive the fiery temperatures exceeding more than 3000 degrees F (1600 degrees C).

SpaceX Falcon 9 rocket clears the tower after liftoff at 3:44 a.m. on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., on the first commercial mission to loft the Dragon cargo resupply vehicle to the International Space Station. The Dragon mission was a resounding success from launch to splashdown in the Pacific Ocean on May 31 at 11:42 a.m. EDT. Credit: Ken Kremer/www.kenkremer.com

The down mass capability restores another critical capability lost with the forced retirement of NASA’s Space Shuttle orbiters in July 2011. The astronauts filled Dragon with about 620 kilograms (1367 pounds) of science experiments, trash and non-critical items on this historic test flight.

The first operational Dragon resupply mission to the ISS could blast off as early as September, said Alan Lindenmoyer, manager of NASA’s Commercial Crew and Cargo Program.

“We’ll await the final post flight report to make the determination that this was an extremely successful mission. But they should be well on their way to starting [delivery] services,” said Lindenmoyer at the briefing. “Of course, officially we will look at the post flight data and make an official determination. But I would say at this point it looks like 100 percent success.”

Ken Kremer

Station Astronauts Say Dragon is Plenty Roomy for Hauling Big Crews to Orbit

ISS Astronaut Trio speak to media from Inside newly docked SpaceX Dragon on May 26. NASA astronaut Don Pettit (right), European Space Agency (ESA) astronaut Andre Kuipers (center) and NASA astronaut Joe Acaba (left) speak to reporters on May 26, 2012 soon after opening the Dragon’s hatch. Dragon is the first private space capsule to dock at the International Space Station (ISS). Credit: NASA TV

[/caption]

Just how many astronauts can you cram inside a Dragon ? – think Volkswagen Beetle!

Well at least 6 human space flyers can easily fit inside a SpaceX Dragon vehicle, said NASA Astronaut Don Pettit from aboard the ISS during a Q & A session with reporters on Saturday, May 26. The discussion with the media took place only hours after Pettit’s history making hatch opening to the first private space capsule ever to dock at the International Space Station (ISS).

“We’ve already had all 6 people in here for a brief period,” Pettit told Universe Today during the media session on Saturday, soon after the hatch opening. “We haven’t taken any pictures of all 6 [together] yet.”

NASA astronaut Don Pettit (left), European Space Agency (ESA) astronaut Andre Kuipers (center) and NASA astronaut Joe Acaba (right) speak to reporters on May 26, 2012 from inside the Dragon capsule soon after opening the hatch from the ISS. Credit: NASA TV

The three current station residents who played the key roles in the milestone events of grappling the Dragon cargo resupply craft with the station’s robotic arm and parking it at an open port on the Harmony Node 2 module on Friday, May 25, spoke to reporters while floating inside Dragon for about 20 minutes all told – including Pettit, ESA Astronaut Andre Kuipers and newly arrived fellow NASA astronaut Joe Acaba.

“There’s not enough room in here to hold a barn dance, but for transportation of crew up and down through Earth’s atmosphere and into space, which is a rather short period of time, there’s plenty of room in here for the envisioned crews,” Pettit told me while soaring some 400 kilometers (250 miles) above Earth.

Dragon is the world’s first commercial spacecraft to attach to the ISS and was built by SpaceX Corporation, founded in 2002 by CEO and Chief Designer Elon Musk.

All three crew members seemed quite pleased with the Dragon’s layout and quite willing to fly aboard a human rated version in the future. SpaceX is designing Dragon to be capable of carrying 7 passengers in the crew configuration – and it looked spacious to me during the media briefing.

Inside of the Dragon module. Beautiful. Spacious, Modern. Blue LEDs. Feels a bit like a sci-fi...
Caption and Photo Credit: Andre Kuipers/ESA/NASA

“I spent quite a bit of time poking around in here this morning, just looking at the engineering and the layout, and I’m very pleased,” said Pettit. “It looks like it carries about as much cargo as I could put in my pickup truck. And it’s roomier than a Soyuz, so flying up in a human-rated Dragon is not going to be an issue.”

The gumdrop shaped Dragon capsule is 4.4 meters (14.4 ft) tall, and 3.66 m (12 ft) in diameter. It has an internal pressurized volume of about 350 cubic feet

On this first NASA sponsored test flight to rendezvous and dock at the ISS it was packed with 460 kilograms (1014 lbs) of non-critical cargo including 306 kg (674 lbs) of food and crew provisions; 21 kg (46 lbs) of science experiment; 123 kg (271 lbs) prepositioned cargo bags to be used for future flights; and 10 kg (22 lbs) of assorted computer supplies and a laptop.

The crew starts unloading Dragon today. It will remain berthed at the million pound orbiting outpost for about 6 days until it is detached on May 31 for a return trip to Earth and splashdown and retrieval in the Pacific Ocean a few hundred km (mi) off the coast of California.

The Dragon launched flawlessly atop a SpaceX built Falcon 9 booster on May 22 from Pad 40 at Cape Canaveral Air Force Station, Florida.

Since the forced retirement of NASA’s Space Shuttle fleet in July 2011 and for at least the next 3 to 5 years, the only way U.S. astronauts can reach the ISS is aboard ferry flights on the cramped three person Russian Soyuz capsule at a cost of some $60 million per seat to U.S. taxpayers.

SpaceX is one of four private companies receiving NASA funding under the Commercial Crew and Cargo Program and seeking to develop commercial “space taxis” to low Earth orbit.

A human-rated Dragon is one of the vehicles engaged in the on-going competition and vying for a NASA contract. But the first crewed flight to restore US human spaceflight capability has been delayed by years because of repeated slashes to NASA’s budget by the US Congress.

NASA now estimates that the first space taxi – possibly the SpaceX Dragon – won’t fly until about 2017.

Ken Kremer

Incredible Dragon Approach and Berthing – Image Gallery from Andre Kuipers aboard ISS

Dragon approaching International Space Station (ISS) over Namibia Hours on end monitoring Dragon's approach is no punishment. Here over Namibia. Credit: Andre Kuipers/ESA/NASA

[/caption]

On Friday, May 25, astronauts aboard the International Space Station (ISS) made space history when they deftly reached out with the stations robotic arm and grabbed the approaching SpaceX Dragon resupply carrier and then parked the first ever commercial cargo craft at an open port on the massive lab complex while orbiting some 407 kilometers (253 miles) above Earth – check out the gallery here !

Working in tandem, NASA astronaut Don Pettit and ESA astronaut Andre Kuipers snared the Dragon craft as it was drifting in free space about 10 m (32 ft) away with the 18 m (58 ft) long Canadian robot arm at 9:56 a.m. EDT and connected the first privately built capsule to a parking spot on the Earth-facing side of the Harmony Node 2 module on the ISS at 12:02 p.m. EDT on May 25.

Dragon over the Rocky Mountains. Credit: Andre Kuipers/ESA/NASA

Here’s a gallery of images from Andre Kuipers showing the Dragon’s rendezvous, grappling and docking at the million pound Earth orbiting space station currently inhabited by a crew of 6 astronauts and cosmonauts working as a united team from the US, Russia and the Netherlands and representing humanities tenuous foothold at the High Frontier.

All these photos were taken on May 25, 2012 using a Nikon D2Xs.

The crew ‘Entered the Dragon’ for the first time on Saturday, May 26.

Over the next few days, the crew will unload the living provisions, supplies and equipment loaded aboard the Dragon capsule and then refill it with science samples and trash for the return trip to Earth.

Dragon will undock from the ISS on May 31 and splash down hours later off the coast of California in the Pacific Ocean.

And through May 31, you can spot and photograph the Dragon/ISS combo orbiting overhead – read my article here for further details.

Approach to 10 metres. Credit: Andre Kuipers/ESA/NASA
Manoeuvring Dragon to the docking port. Credit: Andre Kuipers/ESA/NASA
Like this it looks a bit like a model from a 70's sci-fi film. Credit: Andre Kuipers/ESA/NASA
Dragon and Earth. Credit: Andre Kuipers/ESA/NASA
Teamwork in the Cupola during Dragon approach - Don Pettit and Andre Kuipers. Credit: ESA/NASA

Dragon is the world’s first commercial resupply vehicle. It was launched flawlessly atop a SpaceX built Falcon 9 booster on May 22 from Pad 40 at Cape Canaveral Air Force Station, Florida.

Ken Kremer

Spot the New Space Era as ISS & Dragon Streak Across the Sky – This Week Only !

The New Commercial Space Era Streaks Across the Night Sky - Docked Dragon and International Space Station (ISS) at 4:07 AM EDT near Princeton, NJ on May 26, 2012, less than 24 hours after the Dragon was attached to the Harmony node. 25 sec exposure. Credit: Ken Kremer

[/caption]

This week and this week only you can see the dawn of the new Commercial Space Era with your own eyes – it’s soaring above your head a mere 400 kilometers (250 miles) away. All you have to do is a quick search, hope for clear skies and traipse outside.

Following the historic attachment of the maiden commercial Dragon cargo carrier to the Harmony node on the International Space Station (ISS) on May 25, the massive orbiting laboratory will be shining just a little bit brighter and prouder as it steaks overhead across the sky at 17,500 MPH (32140 KPH).

Dragon and ISS are literally trailblazing the pathway to the new Commercial Space Era for all to see.

So, for a limited time only between right now and the scheduled May 31 undocking of the SpaceX Dragon spacecraft from the ISS there will be occasional viewing opportunities to catch the dynamic duo speeding merrily across the night time sky.

And the station crew of 6 astronauts and cosmonauts living aboard just opened the hatch from the ISS and “Entered the Dragon” earlier today, May 26 – To make it even more special !

Many folks have never seen an ISS flyover and I can’t think of a better time than now to get started. I’ve held several ISS Sighting star parties in different US States and everyone is thrilled and amazed at how bright the ISS shines – In fact it’s the brightest object in the night sky other than the Sun and the Moon.

Docked Commercial SpaceX Dragon and International Space Station (ISS) streak across the pre dawn sky at 4:07 AM EDT near Princeton, NJ on May 26, 2012, less than 24 hours after the Dragon was attached to the Harmony node. 25 sec exposure. Credit: Ken Kremer

To determine if there are any favorable sighting opportunities in your area, check out the NASA website on Human Spaceflight Sighting Opportunities – here – for a detailed listing of the precise times, elevations, direction and durations. It’s an easy to use viewing guide. Just plug in the particulars of the country in which you live

Another great source is Heaven’s Above – here

ISS streaks over Florida skies at a star party for space enthusiasts around the KSC Quality Inn days prior to SpaceX Falcon 9/Dragon blastoff. Credit: Ken Kremer/www.kenkremer.com

Last night I shot some time lapse astrophotos (above) when the gloomy New Jersey clouds finally cleared using a digital SLR and exposure times of 20 to 30 seconds.

Read my eyewitness account of the spectacular pre-dawn May 19 launch of the Dragon resupply vehicle atop a Falcon 9 rocket from Cape Canaveral, Florida here and the docking here

Now – Go Spot the Dragon and the Station !

and send Ken your blazing Astrophotos to post at Universe Today

Happy Viewing and Clear Skies

Ken Kremer

Videos: Dragon Capsule Now Successfully Attached to ISS

Screen capture from NASA TV of the SpaceX Dragon capsule berthed to the International Space Station.

This day will go down in history as the first time a commercial company has their own spacecraft attached to the International Space Station.

After Don Pettit grappled SpaceX’s Dragon capsule with the CanadArm2, Andre Kuipers later installed the capsule on the nadir port of the station’s Harmony node at 15:02 UTC/11:52 a.m. EDT. NASA astronaut Joe Acaba completed berthing operations by bolting the Dragon to Harmony at 16:02 UTC/12:02 p.m. EDT to the space station Friday.

Congratulations on a wonderful capture,” astronaut Megan Behnken radioed to the station crew from Mission Control. “You’ve made a lot of folks happy down here, over in Hawthorne and right here in Houston. Great job, guys.”

More videos, including the post-docking press conference with a jubilant Elon Musk and his SpaceX team.

“Today marks another critical step in the future of American spaceflight,” NASA Administrator Charles Bolden said. “Now that a U.S. company has proven its ability to resupply the space station, it opens a new frontier for commercial opportunities in space — and new job creation opportunities right here in the U.S. By handing off space station transportation to the private sector, NASA is freed up to carry out the really hard work of sending astronauts farther into the solar system than ever before.”

The plan is to wait until Saturday to open hatches. The spacecraft is carrying nearly 460 kg (1,150) pounds of equipment and supplies: 674 pounds of food and crew provisions; 46 pounds of science hardware and equipment; 271 pounds of cargo bags needed for future flights; and 22 pounds of computer equipment.

“The crew is pretty excited so don’t be surprised if they want to open the hatches a little early,” said ISS Flight Director Holly Ridings at a press conference.

The schedule has Dragon remaining berthed to the ISS until May 31. The CanadArm2 will unberth the capsule and then release it. Dragon is the only cargo ship designed to return to Earth with experiments and equipment; others ships such as the Russian Progress, the European ATV and the Japanese HTV all burn up in the atmosphere. The Russian Soyuz crew craft can bring home limited equipment.

[/caption]

Dragon Grappled and Berthed for History Making Docking at Station Today – May 25

SpaceX Dragon successfully grappled today, May 25, 2012 in a historic making feat by astronauts using the robotic arm aboard the International Space Station (ISS) at 9:56 a.m. Dragon is the first private spacecraft to ever dock at the ISS. Credit: NASA TV

[/caption]

The first private spacecraft – named Dragon – was berthed at the International Space Station (ISS) today, May 25, after being dramatically captured by the astronaut crew earlier this morning using the station’s robotic arm in a landmark event in space history – Dragon is the first commercial spacecraft to attach to the International Space Station.

“Capture is confirmed at 9:56 a.m. EDT [1356 GMT],” said Mission Control Houston commentator Josh Byerly, “as the spacecraft [Dragon & ISS] were passing about 251 miles over northwest Australia. Official mission elapsed time was 3 days, 6 hours and 11 minutes and 23 seconds when capture occurred.”

Two hours later, Dragon was successfully attached to the ISS at 12:02 p.m. EDT when 16 motorized bolts on the common berthing mechanism (CBM) latched and locked the cargo vessel to the Harmony module as the giant complex was soaring over the Pacific Northwest region of the US – concluding a dramatic day of momentus space spectaculars.

SpaceX has done it. They are the first private company to launch and dock their own spacecraft at the International Space Station. Dragon has been successfully captured.”

“Looks like we caught a Dragon by the tail !” said a gleeful Astronaut Don Pettit of NASA who plucked the Dragon from space with the robotic arm as it was in free drift about 10 meters from the station.

Today’s successful Dragon capture and docking ushers in a new era in the history of spaceflight and will radically change the way we do business in space from this day forward.

NASA’s goal is to significantly drive down the cost of transporting cargo and crews to low Earth orbit by using private commercial companies to foster competition and innovation in the free market – much like happened with the airline industry of last century.

Screen captures from inside 40 m

The Dragon cargo resupply capsule is a commercial spacecraft designed and developed by SpaceX and was flawlessly launched atop a Falcon 9 booster from Cape Canaveral, Florida on a historic test flight on May 22 to become the first private vehicle ever to rendezvous and dock at the million pound orbiting space complex.

Following a successful series of close approach rendezvous tests on Thursday, May 24, when it flew to the ISS from behind and below during fly-under maneuvers to within 2.4 km (1.6 mi), the commercial cargo carrier was cleared for final rendezvous, grappling and docking today.

Dragon at 30 m hold point on May 25

This morning at about 7 a.m. EDT Dragon was given permission to enter the so called keep out sphere (KOS) which is 200 meters from the station. KOS is an imaginary circle drawn around the ISS that prevents the risk of collision with the massive orbiting lab complex. The ISS is orbiting some 400 km (250 miles) above Earth.

Dragon utilized a combination of LIDAR laser ranging and thermal imagers sensors to determine distance as it closed in on the ISS to the final hold point about 10 meters (30 ft) away for final capture by two astronauts on board at work stations located inside the Cupola dome maneuvering the stations robotic arm. The Dragon’s thrusters are disabled at the 10 meter point to prevent an accidental firing and any undesired movement leading to a potential collision.

Dragon was commanded by the SpaceX flight control team based in Hawthorne, Calif, to slowly approach the ISS from below, gradually stopping along the way at ever closer hold points (250 m, 200 m, 150 m, 70 m, 30 m, 10 m) to confirm the crafts position and velocity and that all spacecraft navigation systems were functioning properly to insure a safe capture and berthing operation.

Dragon reached the 30 m hold point at about 9:14 a.m. EDT and then had to wait for final approval and before proceeding closer to the station.

Dragon arrived at the final 10 m hold point at about 9:45 a.m.

“Crew is ready for Dragon capture,” said ISS Astronaut Kuipers from the European Space Agency (ESA).

“You have a go for capture,” said Houston Mission control at about 9:49 a.m. EDT

The International Space Station as captured by thermal camera on-board Dragon during approach on May 25. Credit: SpaceX

Some stray retro reflections emanating from the external pallet on Japanese Kibo module affected measurements by the Dragons LIDAR system causing a minor 2 hour delay in final approach and grappling as the unit was recalibrated. Indeed one of the LIDAR units was taken offline due to suspect readings but the mission still continued. Since this is a test flight delays are to be expected.

Expedition 31 Flight Engineers Don Pettit and Andre Kuipers worked in tandem using the Canadarm2 robotic arm to reach out and grapple the supply ship shortly before 10 a.m. EDT for berthing to the Earth-facing side of the station’s Harmony node later today.

SpaceX Dragon successfully grappled today, May 25, 2012 in a historic making feat by astronauts using the robotic arm aboard the International Space Station (ISS) at 9:56 a.m. Dragon is the first private spacecraft to ever dock at the ISS. Credit: NASA TV

Pettit successfully grappled the Dragon with the robotic arm at 9:56 a.m. EDT Kuiper accomplished the berthing a few hours later.

Pettit inspected the Dragon’s berthing mechanism with high powered binoculars after the grappling was done and found it to be in good shape for the subsequent joining to the ISS with sign of no damage from micrometeoroids.

“It looks like a clean interface,” said Pettit to Mission Control.

SpaceX Dragon successfully grappled today, May 25, 2012 in a historic making feat by astronauts using the robotic arm aboard the International Space Station (ISS) at 9:56 a.m. (1356 GMT). Dragon is the first private spacecraft to ever dock at the ISS. Credit: NASA TV

Dragon is scheduled to spend about a week docked with the station before returning to Earth for a parachute assisted splashdown in the Pacific Ocean off the coast of California on May 31 for an ocean retrieval.

For this initial test flight Dragon is loaded with over 460 kg (1100 pounds) of non-critical items such as food, water, clothing as well as research equipment and student science experiments.

The ISS crew expects to open the hatch and enter the Dragon for the first time on Saturday, May 26.

SpaceX has invested about $1.2 Billion in development of the Falcon 9 and Dragon space vehicles and also received about $381 Million in funding from NASA under the Commercial Orbital Transportation Services (COTS) initiative to develop commercial cargo vehicles to resupply the station.

Dragon will partially replace the cargo carrying duties that were totally lost when NASA’s space shuttles were prematurely and forcibly retired by US politicians after the final shuttle mission in July 2011. No American vehicle has visited the ISS since the shuttle shutdown. The US is now fully dependent on the Russians to ferry astronauts to the ISS for at least the next 3 to 5 years or more and the gap continues to grow as NASA’s budget is slashed by visionless politicians.

SpaceX is under contract with NASA to conduct a dozen Falcon 9/Dragon resupply missions to carry about 44,000 pounds of cargo to the ISS at a cost of some $1.6 Billion over the next few years.

The first operational Dragon resupply mission to the ISS is expected later this year, perhaps as soon as late summer.

Dragon at 80 m from the Space Station on May 25, 2012. NASA TV
Dragon at the 250-meter hold position, just outside the “keep-out” sphere of the International Space Station on May 25. NASA TV
SpaceX Dragon Commercial Cargo Craft Approaches the International Space Station on May 24, 2012. Credit: NASA

A mission status briefing was held at 1 p.m. EDT to discuss the day’s activities and all the days momentous events were broadcast live on NASA TV.

The high stakes Dragon mission to the High Frontier has been a resounding success thus far and its importance to NASA’s future and the future of human spaceflight cannot be overstated.

Ken Kremer

Tally Ho Dragon!

The SpaceX Dragon capsule appears as a dot of light in this image from the International Space Station. Credit: NASA/SpaceX

Early today, SpaceX’s Dragon capsule successfully flew near the International Space Station and completed two big tests of its in-space capabilities, all critical tests for tomorrow’s big event: the first berthing of a commercial spacecraft to the ISS. As Dragon approached, astronaut Don Pettit spied the spacecraft first. “I think I can see it now,” he said, and Mission Control in Houston radioed back, “Copy that. Tally ho Dragon!”

With the successes today, NASA has given SpaceX a “go” for berthing activities on Friday, May 25.

[/caption]

Dragon initially appeared as a spot of light against the blackness of space, and later the outline of the capsule and its solar arrays became visible. It came within 2.4 km from the ISS.

Dragon communicated with the ISS and demonstrated its relative GPS, and the astronauts on the ISS successfully communicated back with Dragon by turning on its outside strobe light. The vehicle demonstrated both a pulsed and a full abort, as well as free drift, floating freely in orbit as it will when grappled by the space station’s robotic arm. And its proximity operations sensors and SpaceX’s COTS UHF Communication Unit (CUCU) all worked well during tests today.

Finally, Dragon completed a final height adjustment burn at 12:09 UTC/7:09 a.m. CDT to depart the close vicinity of the Space Station, and then began a “racetrack” trajectory to re-approach the station for grapple and berthing attempts on Friday.

“It went very close to how we had trained for it,” said ISS Flight Director Holly Ridings at a press briefing following Dragon’s maneuvers. The only glitch was a computer monitor on the space station that froze and had to be re-booted.

“Right now our mission is looking just like our simulations,” said John Couluris from SpaceX, lead mission director for the COTS 2 flight. “Today was a big confidence boost. It’s exciting being an American and putting an American spacecraft into orbit.”

Friday’s berthing will be the big test, as Dragon will do a series of burns to bring it closer to the ISS. As Dragon flies around the ISS, there are several decision points where NASA and SpaceX will check the health of the spacecraft. Each point has a “go” sequence if all is going well. When Dragon is about 10 meters away from the Station, all conditions will be assessed in order to give the final “go” for berthing. Both vehicles will be put in free drift so that no thrusters fire, and Kuipers and Pettit will use the Space Station’s Canadarm2 to grab the Dragon and berth it to the complex. Once attached, the crew will have a week to unload the supplies and then put contents in that is scheduled to return to Earth.

Dragon is the only cargo ship designed to return to Earth with experiments and equipment; others ships such as the Russian Progress, the European ATV and the Japanese HTV all burn up in the atmosphere. The Russian Soyuz crew craft can bring home limited equipment.

The initial maneuvers will start at about 06:00 UTC on May 25 (1 am CDT), with capture now scheduled for 12:00 UTC/7 am CDT, and berthing scheduled for about 15:30 UTC/10:30 am CDT. “The timing may move back or forth depending on how much time we need to evaluate the spacecraft as it sits below station in that R-bar location,” said Ridings.

Dragon is the first US-made ship to come to the ISS since about a year ago when the last space shuttle flew.