Webb Examined an Asteroid Belt and Found More Than it Bargained For

This image of the dusty debris disc surrounding the young star Fomalhaut is from Webb’s Mid-Infrared Instrument (MIRI). It reveals three nested belts extending out to 23 billion kilometres from the star. Image Credit: NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona)

One of the things astronomers would love to see is planets forming around other stars. That would help us understand our own Solar System better. But it all happens behind a veil of obscuring dust. The James Webb Space Telescope has the power to see through the veil.

A team of astronomers pointed the JWST at the well-known star Fomalhaut and its dusty debris disk. They found more complexity than they imagined, including hints of planets forming among all that dust and debris.

Continue reading “Webb Examined an Asteroid Belt and Found More Than it Bargained For”

Astronomers Directly Image Debris Disk and find a Jupiter-Sized Planet Orbiting a Sunlike Star

Astronomers with the SHINE collabortion observed a debris disk containing a Super-Jupiter around a young star. Credit: ALMA (ESO/NAOJ/NRAO); M. Weiss (NRAO/AUI/NSF)

According to the most widely-accepted theory, planetary systems form from large clouds of dust and gas that form disks around young stars. Over time, these disks accrete to create planets of varying size, composition, and distance from their parent star. In the past few decades, observations in the mid- and far-infrared wavelengths have led to the discovery of debris disks around young stars (less than 100 million years old). This has allowed astronomers to study planetary systems in their early history, providing new insight into how systems form and evolve.

This includes the SpHere INfrared survey for Exoplanets (SHINE) consortium, an international team of astronomers dedicated to studying star systems in formation. Using the ESO’s Very Large Telescope (VLT), the SHINE collaboration recently directly imaged and characterized the debris disk of a nearby star (HD 114082) in visible and infrared wavelengths. Combined with data from NASA’s Transiting Exoplanet Space Satellite (TESS), they were able to detect a gas giant many times the size of Jupiter (a “Super-Jupiter”) embedded within the disk.

Continue reading “Astronomers Directly Image Debris Disk and find a Jupiter-Sized Planet Orbiting a Sunlike Star”

Another Collection of Newly Forming Planetary Systems. This Time from the Gemini Planet Imager

This figure shows the dust rings around young stars captured by the Gemini Planet Imager Exoplanet Survey, or GPIES. The rings show a diversity of shapes and sizes, made more extreme by the different projections of the rings on the sky. (UC Berkeley image by Thomas Esposito)

Over the next decade, several very powerful telescopes will come online. Observing time on these ‘scopes will be in high demand, and their range of targets will span a whole host of topics in astronomy, astrophysics, and cosomology.

One of the topics near the top of the list is exoplanets.

But how will astronomers know where to spend their precious exoplanet observing time?

Continue reading “Another Collection of Newly Forming Planetary Systems. This Time from the Gemini Planet Imager”

Astronomers See the Wreckage from a Collision Between Exoplanets

RArtist’s concept illustrating a catastrophic collision between two rocky exoplanets in the planetary system BD +20 307, turning both into dusty debris. Credits: NASA/SOFIA/Lynette Cook

The history of our Solar System is punctuated with collisions. Collisions helped create the terrestrial planets and end the reign of the dinosaurs. And a massive collision between Earth and an ancient body named Theia likely created the Moon.

Now astronomers have found of evidence of a collision between two exoplanets in a distant solar system.

Continue reading “Astronomers See the Wreckage from a Collision Between Exoplanets”

The Oldest and Coldest White Dwarf Ever Found has Bizarre Dust Rings Around it

In this illustration, an asteroid (bottom left) breaks apart under the powerful gravity of LSPM J0207+3331, the oldest, coldest white dwarf known to be surrounded by a ring of dusty debris. Scientists think the system’s infrared signal is best explained by two distinct rings composed of dust supplied by crumbling asteroids. Credits: NASA’s Goddard Space Flight Center/Scott Wiessinger

When stars like our Sun exhaust their hydrogen fuel, they enter what is known as their Red-Giant-Branch (RGB) phase. This is characterized by the star expanding to several times it original size, after which they shed their outer layers and become compact white dwarfs. Over the next few billion years, it is believed that these stars will slowly consume any objects and dust rings still close enough to be influenced by their gravity.

However, a citizen scientist named Melina Thévenot recently made a surprising discovery when observing a white dwarf system. Based on data from the Wide-field Infrared Survey Explorer (WISE) mission, this star has been a white dwarf for billions of years, but still has multiple rings of dust around it. Known as LSPM J0207+3331 (or J0207), this discovery could force researchers to reconsider models of planetary systems.

Continue reading “The Oldest and Coldest White Dwarf Ever Found has Bizarre Dust Rings Around it”

New Ideas for the Mysterious Tabby’s Star: a Gigantic Planet or a Planet With Rings

Artist's concept of KIC 8462852, which has experienced unusual changes in luminosity over the past few years. Credit: NASA, JPL-Caltech

KIC 8462852 (aka. Tabby’s Star) captured the world’s attention back in September of 2015 when it was found to be experiencing a mysterious drop in brightness. A week ago (on May 18th), it was announced that the star was at it again, which prompted observatories from all around the world to train their telescopes on the star so they could observe the dimming as it happened.

And just like before, this mysterious behavior has fueled speculation as to what could be causing it. Previously, ideas ranged from transiting comets and a consumed planet to alien megastructures. But with the latest studies to be produced on the subject, the light curve of the star has been respectively attributed to the presence of a debris disk and Trojan asteroids in the system and a ring system in the outer Solar System. Continue reading “New Ideas for the Mysterious Tabby’s Star: a Gigantic Planet or a Planet With Rings”

Hubble Images Three Debris Disks Around G-type Stars

An image of the circum-stellar disk around HD 207129. The three circled objects are background objects and part of the disk. Image: Hubble Space Telescope, Glenn Schneider et al 2016.
An image of the circum-stellar disk around HD 207129. The three circled objects are background objects and are not part of the disk. Image: Hubble Space Telescope, Glenn Schneider et al 2016.

A team using the Hubble Space Telescope has imaged circumstellar disk structures (CDSs) around three stars similar to our Sun. The stars are all G-type solar analogs, and the disks themselves share similarities with our Solar System’s own Kuiper Belt. Studying these CDSs will help us better understand their ring-like structure, and the formation of solar systems.

The team behind the study was led by Glenn Schneider of the Seward Observatory at the University of Arizona. They used the Hubble’s Space Telescope Imaging Spectrograph to capture the images. The stars in the study are HD 207917, HD 207129, and HD 202628.

Theoretical models of circumstellar disk dynamics suggest the presence of CDSs. Direct observation confirms their presence, though not many of these disks are within observational range. These new deep images of three solar analog CDSs are important. Studying the structure of these rings should lead to a better understanding of the formation of solar systems themselves.

A is the observed image of HD 207917. B is the best-fit debris ring model of the same star. Image: Hubble, G. Schneider et. al. 2016.
A is the observed image of HD 207917. B is the best-fit debris ring model of the same star. Image: Hubble, G. Schneider et. al. 2016.

Debris disks like these are separate from protoplanetary disks. Protoplanetary disks are a mixture of both gas and dust which exist around younger stars. They are the source material out of which planetesimals form. Those planetesimals then become planets.

Protoplanetary disks are much shorter-lived than CDSs. Whatever material is left over after planet formation is typically expelled from the host solar system by the star’s radiation pressure.

In circumstellar debris disks like the ones imaged in this study, the solar system is older, and the planets have already formed. CDSs like these have lasted this long by replenishing themselves. Collisions between larger bodies in the solar system create more debris. The resulting debris is continually ground down to smaller sizes by repeated collisions.

This process requires gravitational perturbation, either from planets in the system, or by binary stars. In fact, the presence of a CDSs is a strong hint that the solar system contains terrestrial planets.

A circumstellar disk of debris around a mature stellar system could indicate the presence of Earth-like planets. Credit: NASA/JPL
A circumstellar disk of debris around a mature stellar system could indicate the presence of Earth-like planets. Credit: NASA/JPL

The three disks in this study were viewed at intermediate inclinations. They scatter starlight, and are more easily observed than edge-on disks. Each of the three circumstellar disk structures possess “ring-like components that are more massive analogs of our solar system’s Edgeworth–Kuiper Belt,” according to the study.

The study authors expect that the images of these three disk structures will be studied in more detail, both by themselves and by others in future research. They also say that the James Webb Space Telescope will be a powerful tool for examining CDSs.

Read more: It’s Complicated: Hubble Survey Finds Unexpected Diversity in Dusty Discs Around Nearby Stars

Search for Planetary Nurseries in the Latest Citizen Science Project

Image Credit: diskdetectives.org

Growing up, my sister played video games and I read books. Now that she has a one-year-old daughter we constantly argue over how her little girl should spend her time. Should she read books in order to increase her vocabulary and stretch her imagination? Or should she play video games in order to strengthen her hand-eye coordination and train her mind to find patterns?

I like to believe that I did so well in school because of my initial unadorned love for books. But I might be about to lose that argument as gamers prove their value in science and more specifically astronomy.

Take a quick look through Zooniverse and you’ll be amazed by the number of Citizen Science projects. You can explore the surface of the moon in Moon Zoo, determine how galaxies form in Galaxy Zoo and search for Earth-like planets in Planet Hunters.

In 2011 two citizen scientists made big news when they discovered two exoplanet candidates — demonstrating that human pattern recognition can easily compliment the powerful computer algorithms created by the Kepler team.

But now we’re introducing yet another Citizen Science project: Disk Detective.

Planets form and grow within dusty circling planes of gas that surround young stars. However, there are many outstanding questions and details within this process that still elude us. The best way to better understand how planets form is to directly image nearby planetary nurseries. But first we have to find them.

zooniverse

“Through Disk Detective, volunteers will help the astronomical community discover new planetary nurseries that will become future targets for NASA’s Hubble Space Telescope and its successor, the James Webb Space Telescope,” said the chief scientist for NASA Goddard’s Sciences and Exploration Directorate, James Garvin, in a press release.

NASA’s Wide-field Infrared Survey Explorer (WISE) scanned the entire sky at infrared wavelengths for a year. It took detailed measurements of more than 745 million objects.

Astronomers have used complex computer algorithms to search this vast amount of data for objects that glow bright in the infrared. But now they’re calling on your help. Not only do planetary nurseries glow in the infrared but so do galaxies, interstellar dust clouds and asteroids.

While there’s likely to be thousands of planetary nurseries glowing bright in the data, we have to separate them from everything else. And the only way to do this is to inspect every single image by eye — a monumental challenge for any astronomer — hence the invention of Disk Detective.

Brief animations allow the user to help classify the object based on relatively simple criteria, such as whether or not the object is round or if there are multiple objects.

“Disk Detective’s simple and engaging interface allows volunteers from all over the world to participate in cutting-edge astronomy research that wouldn’t even be possible without their efforts,” said Laura Whyte, director of Citizen Science at the Adler Planetarium in Chicago, Ill.

The project is hoping to find two types of developing planetary environments, distinguished by their age. The first, known as a young stellar object disk is, well, young. It’s less than 5 million years old and contains large quantities of gas. The second, known as a debris disk, is older than 5 million years. It contains no gas but instead belts of rocky or icy debris similar to our very own asteroid and Kupier belts.

So what are you waiting for? Head to Disk Detective and help astronomers understand how complex worlds form in dusty disks of gas. The book will be there when you get back.

The original press release may be found here.

Astronomy Without A Telescope – Alien Mining

A disk of debris around a star is a likely indicator of planets. A disk of debris with a wildly atypical chemistry could mean aliens.

[/caption]

Recently, some researchers speculated on what types of observational data from distant planetary systems might indicate the presence of an alien civilization, determined that asteroid mining was likely to be worth looking for – but ended up concluding that most of the effects of such activity would be difficult to distinguish from natural phenomena.

And in any case, aren’t we just anthropomorphizing by assuming that intelligent alien activity will be anything like human activity?

Currently – apart from a radio, or other wavelength, transmission carrying artificial and presumably intelligent content – it’s thought that indicators of the presence of an alien civilization might include:
• Atmospheric pollutants, like chlorofluorocarbons – which, unlike methane or molecular oxygen, are clearly manufactured rather than just biogenically produced
• Propulsion signatures – remember how the Vulcans detected humanity in First Contact (or at least they decided we were worth visiting after all, despite all the I Love Lucy re-runs)
Stellar engineering – where a star’s lifetime is artificially extended to maintain the habitable zone of its planetary system
Dyson spheres – or at least their more plausible off-shoots, such as Dyson swarms.

And perhaps add to this list – asteroid mining, which would potentially create a lot of dust and debris around a star on a scale that might be detectable from Earth.

There is a lot of current interest in debris disks around other stars, which are detectable when they are heated up by the star they surround and then radiate that heat in the infra-red and sub-millimeter wavelengths. For mainstream science, debris disk observations may offer another way to detect exoplanets, which might produce clumping patterns in the dust through gravitational resonance. Indeed it may turn out that the presence of a debris disk strongly correlates with the existence of rocky terrestrial planets in that system.

But now going off the mainstream… presuming that we can eventually build up a representative database of debris disk characteristics, including their density, granularity and chemistry derived from photometric and spectroscopic analysis, it might become possible to identify anomalous debris disks that could indicate alien mining activities.

Some recent astronomy pareidolia. Not an alien mining operation on Mercury, but a chunk of solidified ejecta commonly found in the center of many impact craters. Credit: NASA.

For example, we might see a significant deficiency in a characteristic element (say, iron or platinum) because the aliens had extracted these elements – or we might see an unusually fine granularity in the disk because the aliens had ground everything down to fine particles before extracting what they wanted.

But surely it’s equally plausible to propose that if the aliens are technologically advanced enough to undertake asteroid mining, they would also do it with efficient techniques that would not leave any debris behind.

The gravity of Earth makes it easy enough to just blow up big chunks of rock to get at what you want since all the debris just falls back to the ground and you can sort through it later for secondary extraction.

Following this approach with an asteroid would produce a floating debris field that might represent a risk to spacecraft, as well as leaving you without any secondary extraction opportunities. Better to mine under a protective canopy or just send in some self-replicating nanobots, which can separate out an enriched chunk of the desired material and leave the remainder intact.

If you’re going to play the alien card, you might as well go all in.

Further reading: Forgan and Elvis. Extrasolar Asteroid Mining as Forensic Evidence for Extraterrestrial Intelligence.

Some useful tips on asteroid mining can be found here.

Astronomy Without A Telescope – Our Unlikely Solar System

A circumstellar disk of debris around a matured stellar system may indicate that Earth-like planets lie within. LUVOIR will be able to see inside the disk to watch planets forming. Credit: NASA
A circumstellar disk of debris around a matured stellar system may indicate that Earth-like planets lie within. LUVOIR will be able to see inside the disk to watch planets forming. Credit: NASA

[/caption]

Recent modeling of Sun-like stars with planetary systems, found that a system with four rocky planets and four gas giants in stable orbits – and only a sparsely populated outer belt of planetesimals – has only a 15 to 25% likelihood of developing. While you might be skeptical about the validity of a model that puts our best known planetary system in the unlikely basket, there may be some truth in this finding.

This modeling has been informed by the current database of known exoplanets and otherwise based on some prima facie reasonable assumptions. Firstly, it is assumed that gas giants are unable to form within the frost line of a system – a line beyond which hydrogen compounds, like water, methane and ammonia would exist as ice. For our Solar System, this line is about 2.7 astronomical units from the Sun – which is roughly in the middle of the asteroid belt.

Gas giants are thought to only be able to form this far out as their formation requires a large volume of solid material (in the form of ices) which then become the cores of the gas giants. While there may be just as much rocky material like iron, nickel and silicon outside the frost line, these materials are not abundant enough to play a significant role in forming giant planets and any planetesimals they may form are either gobbled up by the giants or flung out of orbit.

However, within the frost line, rocky materials are the dominant basis for planet forming – since most light gas is blown out of the region by force of the stellar wind and other light compounds (such as H2O and CO2) are only sustained by accretion within forming planetesimals of heavier materials (such as iron, nickel and silicates). Appreciably-sized rocky planets would probably form in these regions within 10-100 million years after the star’s birth.

So, perhaps a little parochially, it is assumed that you start with a system of three regions – an inner terrestrial planet forming region, a gas giant forming region and an outer region of unbound planetesimals, where the star’s gravity is not sufficient to draw material in to engage in further accretion.

From this base, Raymond et al ran a set of 152 variations, from which a number of broad rules emerged. Firstly, it seems that the likelihood of sustaining terrestrial inner planets is very dependent on the stability of the gas giants’ orbits. Frequently, gravitational perturbations amongst the gas giants results in them adopting more eccentric elliptical orbits which then clears out all the terrestrial planets – or sends them crashing into the star. Only 40% of systems retained more than one terrestrial planet, 20% had just one and 40% had lost them all.

The Moon has retained a comprehensive record of the Late Heavy Bombardment from 4.1 to 3.8 billion years ago - resulting from a reconfiguration of the gas giants. As well as clearing out much of debris disk of the early Solar System, this reconfiguration flung material into the inner solar system to bombard the rocky planets.

Debris disks of hot and cold dust were found to be common phenomena in matured systems which did retain terrestrial planets. In all systems, primal dust is largely cleared out within the first few hundred million years – by radiation or by planets. But, where terrestrial planets are retained, there is a replenishment of this dust – presumably via collisional grinding of rocky planetesimals.

This finding is reflected in the paper’s title Debris disks as signposts of terrestrial planet formation. If this modeling work is an accurate reflection of reality, then debris disks are common in systems with stable gas giants – and hence persisting terrestrial planets – but are absent from systems with highly eccentric gas giant orbits, where the terrestrial planets have been cleared out.

Nonetheless, the Solar System appears as unusual in this schema. It is proposed that perturbations within our gas giants’ orbits, leading to the Late Heavy Bombardment, were indeed late with respect to how other systems usually behave. This has left us with an unusually high number of terrestrial planets which had formed before the gas giant reconfiguration began. And the lateness of the event, after all the collisions which built the terrestrial planets were finished, cleared out most of the debris disk that might have been there – apart from that faint hint of Zodiacal light that you might notice in a dark sky after sunset or before dawn.

Further reading: Raymond et al Debris disks as signposts of terrestrial planet formation.