Antares ‘Return to Flight’ Blastoff Soars to Stellar Success

The Orbital ATK Antares rocket topped with the Cygnus cargo spacecraft launches from Pad-0A, Monday, Oct. 17, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket topped with the Cygnus cargo spacecraft launches from Pad-0A, Monday, Oct. 17, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer

NASA WALLOPS FLIGHT FACILITY, VA – The ‘Return to Flight’ blastoff of Orbital ATK’s upgraded Antares rocket soared to a stellar success this evening, Oct. 17, on a space station bound mission to stock the orbiting outpost with two and a half tons of science and supplies.

The re-engined Orbital ATK Antares/Cygnus OA-5 mission lifted off at 7:45 p.m. EDT, tonight from the Mid-Atlantic Regional Spaceport pad 0A at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore spewing about 1.2 million pounds of liftoff thrust and brilliantly lighting up the evening skies in every direction.

Sporting a pair of more powerful new RD-181 engines, Antares roared off the launch pad somewhat more swiftly than the previous launches and consequently reached its preliminary orbit about one minute earlier.

Cygnus separated from the second stage as planned about 9 minutes after liftoff. The launch marked the first nighttime liftoff of Antares.

“It’s great to see launches to the International Space Station happening again from the Virginia coast – and it shows what can be accomplish with a close partnership of federal and state agencies, along with the U.S. industry, all working together,” said NASA Administrator Charles Bolden.

“I am incredibly proud of what you have all done,” said Bolden in post launch remarks to the launch team at Wallops Launch Control Center. “Thank you for all your hard work.”

Antares launch on Oct. 17, 2016 from NASA's Wallops Flight Facility in Virginia. Credit: © Patrick J. Hendrickson / Highcamera.com
Antares launch on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia. Credit: © Patrick J. Hendrickson / Highcamera.com

This was the first Antares launch in two years following the rockets catastrophic failure just moments after liftoff on Oct. 28, 2014, which doomed the Orb-3 resupply mission to the space station – as witnessed by this author.

The weather was absolutely perfect at 100% GO by launch time and consequently was visible to millions of East Coast residents from the Carolinas to Maine as well as inland regions.

Visibility was aided by cloudless evening skies that afforded a spectacular long distance view of the engine firings for both the first and second stages, as the rocket accelerated to orbit in a southeastwardly direction before arcing over towards the African continent.

The power producing and life giving solar arrays were deployed and unfurled about two hours after liftoff, finished at about 9:40 p.m.

Cygnus is loaded with over 5,100 pounds of science investigations, food, supplies and hardware for the space station and its crew.

Antares launch on Oct. 17, 2016 from NASA's Wallops Flight Facility in Virginia. Credit: © Patrick J. Hendrickson / Highcamera.com
Antares launch on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia. Credit: © Patrick J. Hendrickson / Highcamera.com

After Cygnus arrives at the ISS on Sunday, Oct. 23, Expedition 49 Flight Engineers Takuya Onishi of the Japan Aerospace Exploration Agency and Kate Rubins of NASA will grapple the spacecraft with the space station’s 57 foot long Canadian-built robotic arm. It will take hold of the Cygnus,

Ground controllers will then command the station’s arm to rotate and install it on the bottom of the station’s earth facing Unity module.

The Cygnus spacecraft will spend about five weeks attached to the space station. Cygnus will remain at the space station until November, when the spacecraft will depart the station and begin a fire experiment dubbed Saffire-II.

The 14 story tall commercial Antares rocket launched for the first time in the upgraded 230 configuration – powered by a pair of the new Russian-built RD-181 first stage engines.

For the OA-5 mission, the Cygnus advanced maneuvering spacecraft was loaded with approximately 2,425 kg (5,346 lb.) of supplies and science experiments for the International Space Station (ISS). The cargo was packed inside 56 cargo bags of multiple sizes.

The experiments will support dozens of new and existing investigations as the space station crews of Expeditions 49 and 50 contribute to about 250 science and research studies.

Among the science payloads aboard the Cygnus OA-5 mission is the Saffire II payload experiment to study combustion behavior in microgravity. Data from this exp,eriment will be downloaded via telemetry. In addition, a NanoRack deployer will release Spire Cubesats used for weather forecasting. These secondary payload operations will be conducted after Cygnus departs the space station.

Here is the Cygnus payload manifest:

Payloads:
• Spacecraft Fire Experiment-II (Saffire-II)
• Fast Neuron Spectrometer
• ACM and Experiment Tray
• SLMMD
Cargo:
• ISS Experiment Hardware
• EVA Equipment– EMU Repair Kit– EVA Supplies
• Emergency Equipment
• Photo/TV and Computer Resources– Computer – iPad Air 2
– Laptop – T61P and Connectors – Camera – Nikon D4
• ISS Hardware and Spare ORUs – Cupola Scratch Panes
– Water ORU
• Food, Crew Supplies and Crew Provisions
• Flight Crew Equipment
• Cargo Environment SensorsAdditional payload details can be found at www.nasa.gov/iss-science.

Streak shot of Orbital ATK Antares rocket carrying Cygnus supply ship soars to orbit on Oct. 17, 2016  from Pad-0A at NASA’s Wallops Flight Facility in Virginia.  Credit: Ken Kremer/kenkremer
Streak shot of Orbital ATK Antares rocket carrying Cygnus supply ship soars to orbit on Oct. 17, 2016 from Pad-0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer

The Cygnus spacecraft for the OA-5 mission is named the S.S. Alan G. Poindexter in honor of former astronaut and Naval Aviator Captain Alan Poindexter.

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He is reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Cygnus cargo spacecraft atop Orbital ATK Antares rocket on Pad-0A prior to blastoff on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia on Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer
Cygnus cargo spacecraft atop Orbital ATK Antares rocket on Pad-0A prior to blastoff on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia on Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer

The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA's Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer
2 Moons and Antares on the launch pad on the evening of Oct. 15, 2016 at NASA's Wallops Flight Facility in Virginia in this water reflection shot.  Liftoff of the OA-5 mission to the ISS is planned for Oct. 17, 2016. Credit: Ken Kremer/kenkremer
2 Moons and Antares on the launch pad on the evening of Oct. 15, 2016 at NASA’s Wallops Flight Facility in Virginia in this water reflection shot. Liftoff of the OA-5 mission to the ISS is planned for Oct. 17, 2016. Credit: Ken Kremer/kenkremer

NASA Targets ‘Return to Flight’ of Upgraded Antares for mid-October for Station Resupply

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

NASA is targeting mid-October for the ‘Return to Flight’ launch of the upgraded Orbital ATK Antares rocket on a cargo mission to resupply the International Space Station (ISS) for the first time in nearly two years.

The 14 story tall commercial Antares rocket will launch for the first time in the upgraded 230 configuration powered by new Russian-built first stage engines.

In light of the grounding of the SpaceX Falcon 9 and Dragon cargo flights following the catastrophic Sept.1 launch pad disaster,and the catastrophic Antares launch failure in Oct. 2014, this Orbital ATK mission becomes more critical than ever to keep the space station stocked and fully operational for the resident crews with a reliable American supply train.

NASA and Orbital ATK announced that the re-engined Antares will launch during a five-day launch window that opens no earlier than October 9-13, 2016 on the OA-5 Cygnus cargo mission from the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore.

“A more specific date will be identified upon completion of final operational milestones and technical reviews,” according to statements from NASA and Orbital ATK.

If Antares launches on Oct. 9, liftoff is set 10:47 p.m. EDT and becomes progressively earlier on succeeding days. The launch time moves up to 9:13 p.m. EDT on Oct. 13.

If the launch takes place during this window, it will mark the first truly nighttime launch for Antares from Virgina.

“The arrival and berthing of Cygnus to the International Space Station will be determined by the exact launch date and in coordination with other space station activities,” says NASA.

Orbital ATK's Cygnus cargo spacecraft, protected inside the vertical container shown here, was shipped from our payload processing facility on Wallops main base to our spacecraft fueling facility on Wallops Island earlier this week.  Credit: NASA
Orbital ATK’s Cygnus cargo spacecraft, protected inside the vertical container shown here, was shipped from our payload processing facility on Wallops main base to our spacecraft fueling facility on Wallops Island earlier this week. Credit: NASA

The Cygnus cargo spacecraft was moved this week from the NASA Wallops payload processing facility to the spacecraft fueling facility on Wallops Island.

The next step is to integrate Cygnus onto the Orbital ATK Antares 230 rocket inside the HIF (Horizontal Integration Facility) in anticipation of the launch slated for no earlier than Oct. 9 at 10:47 p.m. EDT.

The Antares 230 medium-class commercial launch vehicle rocket has been upgraded with new first stage Russian-built RD-181 engines fueled by LOX/kerosene – that had to be fully validated before launching NASA’s precious cargo to the International Space Station (ISS).

For the OA-5 mission, the Cygnus advanced maneuvering spacecraft will be loaded with approximately 2,400 kg (5,290 lbs.) of supplies and science experiments for the International Space Station (ISS).

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.

Orbital ATK’s Antares commercial rocket had to be overhauled with completely new first stage engines following the catastrophic launch failure nearly two years ago on October 28, 2018 just seconds after blastoff that doomed the Orb-3 resupply mission to the space station.

The goal of the Antares ‘Return to Flight’ mission is to launch Orbital ATK’s Cygnus cargo freighter on the OA-5 resupply mission for NASA to the ISS and restore the Antares rocket to flight status.

To that end the aerospace firm completed a successful 30 second long test firing of the re-engined first stage on May 31 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Launch Pad 0A – as I reported here earlier.

First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming May 31 hot fire engine test. Credit:  Ken Kremer/kenkremer.com
First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming May 31 hot fire engine test. Credit: Ken Kremer/kenkremer.com

Teams from Orbital ATK and NASA have been scrutinizing the data in great detail ever since then to ensure the rocket is really ready before committing to the high stakes launch.

“Orbital ATK completed a stage test at the end of May and final data review has confirmed the test was successful, clearing the way for the Antares return to flight,” said the company.

“Simultaneously, the company has been conducting final integration and check out of the flight vehicle that will launch the OA-5 mission to ensure that all technical, quality and safety standards are met or exceeded.”

The projected launch date has been delayed several times since the May 31 hot fire test to deal with ‘vibration’ issues detected during the test.

Antares launches had immediately ground to a halt following the devastating launch failure 23 months ago which destroyed the rocket and its critical payload of space station science and supplies for NASA in a huge fireball just seconds after blastoff – as witnessed by this author.

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

As a direct consequence of the catastrophic launch disaster, Orbital ATK managers decided to outfit the Antares medium-class rocket with new first stage RD-181 engines built in Russia.

The launch mishap was traced to a failure in the AJ26 first stage engine turbopump and caused Antares launches to immediately grind to a halt.

Top Orbital ATK management soon decided to ditch the AJ26s, which were 40 year old refurbished engines, originally built during the Soviet era for their moon rocket and originally known as the NK-33.

Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com
Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

The RD-181 replaces the previously used AJ26 engines which failed moments after liftoff during the last launch on Oct. 28, 2014 resulting in a catastrophic loss of the rocket and Cygnus cargo freighter.

The RD-181 flight engines are built by Energomash in Russia and had to be successfully tested via the static hot fire test to ensure their readiness.

Aerial view of an Orbital ATK Antares rocket on launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA's Wallops Flight Facility.  Credit: Patrick J. Hendrickson / Highcamera.com
Aerial view of an Orbital ATK Antares rocket on launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA’s Wallops Flight Facility. Credit: Patrick J. Hendrickson / Highcamera.com

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He will be reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Aerial view of Orbital ATK launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA's Wallops Flight Facility.  Credit: Credit: Patrick J. Hendrickson / Highcamera.com
Aerial view of Orbital ATK launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA’s Wallops Flight Facility. Credit: Credit: Patrick J. Hendrickson / Highcamera.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in May 2016. Credit: Ken Kremer/kenkremer.com

Antares Return to Flight Launch Likely Slips to August, Cygnus Completes Atmospheric Reentry

Antares rocket stands erect, reflecting off the calm waters the night before the first night launch from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014.    Credit: Ken Kremer/kenkremer.com
Antares rocket stands erect, reflecting off the calm waters the night before the first night launch from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer/kenkremer.com

The long awaited maiden launch of Orbital ATK’s revamped Antares commercial rocket utilizing new first stage engines, from its Virginia launch base, will likely slip from July to August a company spokesperson confirmed to Universe Today.

The target date for the ‘Return to Flight’ launch of Antares on a cargo resupply mission for NASA to the International Space Station (ISS) is “likely to result in an updated launch schedule in the August timeframe,” Orbital ATK spokeswoman Sean Wilson told Universe Today.

The company had most recently been aiming towards an Antares launch date around July 6 from NASA’s Wallops Flight Facility – for its next NASA contracted mission to stock the ISS via the Orbital ATK Cygnus cargo freighter on a flight known as OA-5.

Meanwhile the firms most recently launched Cygnus OA-6 cargo ship departed the space station and completed its planned destructive reentry into the Earth’s atmosphere on Wednesday, June 22.

But before Orbital ATK can resume Antares/Cygnus cargo flights to the ISS, it had to successfully hurdle through a critically important milestone on the path to orbit – namely a static hot fire test of the significantly modified first stage to confirm that its qualified for launch.

Orbital ATK conducted a full-power test of the upgraded first stage propulsion system of its Antares rocket on May 31, 2016 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A.  Credit: NASA/Orbital ATK
Orbital ATK conducted a full-power test of the upgraded first stage propulsion system of its Antares rocket on May 31, 2016 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A. Credit: NASA/Orbital ATK

To that end the aerospace firm recently completed a successful 30 second long test firing of the re-engined first stage on May 31 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Launch Pad 0A – as I reported here earlier.

A thorough analysis of the hot fire test results and its implications is underway.

“Our Antares team recently completed a successful stage test and is wrapping up the test data analysis,” Wilson said.

“Final trajectory shaping work is also currently underway, which is likely to result in an updated launch schedule in the August timeframe.”

In the meantime, company engineers continue to ready the rocket and payload.

“We are continuing to prepare for the upcoming launch of the Antares rocket and Cygnus spacecraft for the OA-5 cargo logistics mission to the International Space Station from NASA’s Wallops Flight Facility,” Wilson noted.

It’s also clear that a decision on a launch date target is some weeks away and depends on the busy upcoming manifest of other ISS missions coming and going.

“A final decision on the mission schedule, which takes into account the space station traffic schedule and cargo requirements, will be made in conjunction with NASA in the next several weeks.”

And it also must take into account the launch of the intervening SpaceX ISS cargo flight that was just postponed two days to no earlier than July 18.

Another factor is the delayed launch of the next manned crew on a Russian Soyuz capsule from late June into July. Blastoff of the three person crew from Russia, the US and Japan is set for July 7. OA-5 will deliver some 3 tons of science experiments and crew supplies.

First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming May 31 hot fire engine test. Credit:  Ken Kremer/kenkremer.com
First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the May 31 hot fire engine test. Credit: Ken Kremer/kenkremer.com

Antares launches had immediately ground to a halt following a devastating launch failure 20 months ago which destroyed the rocket and its critical payload of space station science and supplies for NASA in a huge fireball just seconds after blastoff – as witnessed by this author.

As a direct result consequence of the catastrophic launch disaster, Orbital STK managers decided to outfit the Antares medium-class rocket with new first stage RD-181 engines built in Russia.

Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The RD-181 replaces the previously used AJ26 engines which failed moments after liftoff during the last launch on Oct. 28, 2014 resulting in a catastrophic loss of the rocket and Cygnus cargo freighter.

The RD-181 flight engines are built by Energomash in Russia and had to be successfully tested via the static hot fire test to ensure their readiness.

As a result of switching to the new RD-181 engines, the first stage also had to be modified to incorporate new thrust adapter structures, actuators, and propellant feed lines between the engines and core stage structure, Mike Pinkston, Orbital ATK General Manager and Vice President, Antares Program told me in a prior interview.

The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage.   Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016. New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage. Credit: Ken Kremer/kenkremer.com

So the primary goal of the stage test was to confirm the effectiveness of the new engines and all the changes in the integrated rocket stage.

It’s not entirely clear at this time whether the Antares launch delay to August is due to changes in the ISS manifest scheduling or any lingering questions from the hot fire test or both.

“A final decision on the mission schedule definitely takes into account the completion of data analysis combined with the busy space station traffic schedule and NASA’s cargo requirements,” Wilson told me in a response requesting clarification.

Following a quick look immediately following the May 31 test, Orbital ATK officials initially reported that all seemed well, with the caveat that further data review is needed.

“Early indications show the upgraded propulsion system, core stage and launch complex all worked together as planned,” said Mike Pinkston, Orbital ATK General Manager and Vice President, Antares Program.

“Congratulations to the combined NASA, Orbital ATK and Virginia Space team on a successful test.”

Orbital ATK engineers will now “review test data over the next several days to confirm that all test parameters were met. ”

The test used the first stage core planned to launch the OA-7 mission from Wallops late this year.

The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016. Credit: Ken Kremer/kenkremer.com

With the engine test completed, the OA-7 stage will be rolled back to the HIF processing hanger at Wallops and a new stage fully integrated with the Cygnus cargo freighter will be rolled out to the pad for the OA-5 ‘Return to Flight’ mission in August.

The mission of the OA-6 Cygnus ended on Wednesday, with a planned destructive reentry into the Earth’s atmosphere at 9:29 a.m. EDT.

Also known as the SS Rick Husband, it had spent 3 months in orbit since launching in March on a ULA Atlas V.

It departed the ISS on June 14 and continued several science experiments. Most notable was to successfully create the largest fire in space via the Spacecraft Fire Experiment-I (Saffire-I).

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Stunning Auroras From the Space Station in Ultra HD – Videos

Still image shows a stunning aurora captured from the International Space Station. This frame is from a compilation of ultra-high definition time-lapses of the aurora shot from the space station.  Credit: NASA
Still image shows a stunning aurora captured from the International Space Station. This frame is from a compilation of ultra-high definition time-lapses of the aurora shot from the space station. Credit: NASA

Stunning high definition views of Earth’s auroras and dancing lights as seen from space like never before have just been released by NASA in the form of ultra-high definition videos (4K) captured from the International Space Station (ISS).

Whether seen from the Earth or space, auroras are endlessly fascinating and appreciated by everyone young and old and from all walks of life.

The spectacular video compilation, shown below, was created from time-lapses shot from ultra-high definition cameras mounted at several locations on the ISS.

It includes HD view of both the Aurora Borealis and Aurora Australis phenomena seen over the northern and southern hemispheres.

The video begins with an incredible time lapse sequence of an astronaut cranking open the covers off the domed cupola – everyone’s favorite locale. Along the way it also shows views taken from inside the cupola.

The cupola also houses the robotics works station for capturing visiting vehicles like the recently arrived unmanned SpaceX Dragon and Orbital ATK Cygnus cargo freighters carrying science experiments and crew supplies.

The video was produced by Harmonic exclusively for NASA TV UHD;

Video caption: Ultra-high definition (4K) time-lapses of both the Aurora Borealis and Aurora Australis phenomena shot from the International Space Station (ISS). Credit: NASA

The video segue ways into multi hued auroral views including Russian Soyuz and Progress capsules, the stations spinning solar panels, truss and robotic arm, flying over Europe, North America, Africa, the Middle East, star fields, the setting sun and moon, and much more.

Auroral phenomena occur when electrically charged electrons and protons in the Earth’s magnetic field collide with neutral atoms in the upper atmosphere.

“The dancing lights of the aurora provide a spectacular show for those on the ground, but also capture the imaginations of scientists who study the aurora and the complex processes that create them,” as described by NASA.

Here’s another musical version to enjoy:

The ISS orbits some 250 miles (400 kilometers) overhead with a multinational crew of six astronauts and cosmonauts living and working aboard.

The current Expedition 47 crew is comprised of Jeff Williams and Tim Kopra of NASA, Tim Peake of ESA (European Space Agency) and cosmonauts Yuri Malenchenko, Alexey Ovchinin and Oleg Skripochka of Roscosmos.

Some of the imagery was shot by recent prior space station crew members.

Here is a recent aurora image taken by flight engineer Tim Peake of ESA as the ISS passed through on Feb. 23, 2016.

“The @Space_Station just passed straight through a thick green fog of #aurora…eerie but very beautiful,” Peake wrote on social media.

The @Space_Station just passed straight through a thick green fog of #aurora…eerie but very beautiful.  Credit: NASA/ESA/Tim Peake
The @Space_Station just passed straight through a thick green fog of #aurora…eerie but very beautiful. Credit: NASA/ESA/Tim Peake

A new room was just added to the ISS last weekend when the BEAM experimental expandable habitat was attached to a port on the Tranquility module using the robotic arm.

BEAM was carried to the ISS inside the unpressurized trunk section of the recently arrived SpaceX Dragon cargo ship.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Cygnus Cargo Craft Comes Together for Space Station ‘Return to Flight’ Blastoff in December

Cygnus service module built by Orbital ATK in their Dulles, Virginia cleanroom is shown here with unfurled Ultraflex solar panels that will fly for the first time with mated pressurized module on the OA-4 ISS resupply mission on ULA Atlas V rocket on Dec. 3, 2015 from Cape Canaveral, Florida.    Credit: Orbital ATK
Cygnus service module built by Orbital ATK in their Dulles, Virginia cleanroom is shown here with unfurled UltraFlex solar panels that will fly for the first time with mated pressurized module on the OA-4 ISS resupply mission on ULA Atlas V rocket on Dec. 3, 2015 from Cape Canaveral, Florida. Credit: Orbital ATK
See OA-4 mission patch and hardware photos below

The biggest and heaviest Cygnus commercial cargo craft ever built by Orbital ATK is coming together at the Kennedy Space Center as the launch pace picks up steam for its critical ‘Return to Flight’ resupply mission to the space station for NASA. Cygnus is on target for an early December blastoff from Florida and the Orbital ATK team is “anxious to get flying again.”

“We are very excited about the upcoming [OA-4] cargo mission and returning to flight,” said Frank DeMauro, Orbital ATK Vice President for Human Spaceflight Systems Programs, in an exclusive interview with Universe Today. Continue reading “Cygnus Cargo Craft Comes Together for Space Station ‘Return to Flight’ Blastoff in December”

Catastrophic Failure Dooms Antares Launch to Space Station – Gallery

NASA WALLOPS FLIGHT FACILITY, VA – Moments after a seemingly glorious liftoff, an Orbital Sciences Corp. commercial Antares rocket suffered a catastrophic failure and exploded into a spectacular aerial fireball over the launch pad at NASA’s Wallops Flight Facility on the eastern shore of Virginia that doomed the mission bound for the International Space Station on Tuesday, October 28.

The 14 story tall Antares rocket blasted off at 6:22 p.m. EDT from the beachside Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops on only its 5th launch overall.

I witnessed and photographed the launch from the media viewing area on site at NASA Wallops from a distance of about 1.8 miles away.

This story is being updated. See a gallery of photos herein.

Antares was carrying Orbital’s privately developed Cygnus pressurized cargo freighter loaded with nearly 5000 pounds (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission dubbed Orb-3 bound for the International Space Station (ISS).

Orbital Sciences Antares rocket explodes intoan aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

It was the heaviest cargo load yet lofted by a Cygnus. Some 800 pounds additional cargo was loaded on board compared to earlier flights. That was enabled by using the more powerful ATK CASTOR 30XL engine to power the second stage for the first time.

Everything appeared normal at first. But within about five seconds or so there was obviously a serious mishap as the rocket was no longer ascending. It was just frozen in time. And I was looking directly at the launch, not through the viewfinder of my cameras.

Something was noticeably amiss almost instantly as the rocket climbed only very slowly, barely clearing the tower it seemed to me. The rocket failed to emerge from the normal huge plume of smoke and ash that’s purposely deflected away by the flame trench at the base of the pad.

I was stunned trying to comprehend what was happening because it was all so wrong.

It was absolutely nothing like the other Antares launches I’ve witnessed from the media site.

Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

I knew as a scientist and journalist that I was watching a mounting disaster unfolding before my eyes.

Instead of ascending on an accelerating arc, a mammoth ball of fire, smoke and ash blew up the entire sky in front of us like a scene out of hell or war. Literally the sky was set on fire unlike anything I’ve ever witnessed.

A series of mid air explosions rocked the area. I could feel a slight pressure wave followed by a mild but noticeable heat wave passing by.

Then the rocket began to fall back to Earth. Then the ground blew up too as the rocket pieces hit the ground and exploded into a hail of smithereens in every direction.

By this time our NASA escorts starting yelling to abandon everything in place and head immediately for the buses and evacuate the area. The ground fire spread mostly to the northern portion of the pad and the expanding air borne plume also blew northwards. The ground fire was still burning over a half hour later.

Thankfully, everyone got out safe and there were no injuries due to the excellent effort by our NASA escorts trained for exactly these types of unexpected circumstances.

It’s heartbreaking for everyone’s painstaking efforts to get to the point of liftoff after years of effort to fulfill the critical need to resupply that station with the science equipment and experiments for which it was built.

More later

Antares rocket stand erect, reflecting off the calm waters the night before their first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
Antares rocket stands erect, reflecting off the calm waters the night before the first night launch planned from NASA’s Wallops Flight Facility, VA, on Oct. 28, which ended in disaster. Credit: Ken Kremer – kenkremer.com

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Stray Boater Delays Antares Launch to Tuesday

A Monday launch attempt for the third Orbital Sciences cargo mission to the International Space Station was scrubbed because a boat strayed into restricted waters southeast of the launch pad at Wallops Island, Virginia. The Antares rocket, carrying the Cygnus capsule would have flown over the boater had the rocket lifted off and officials cited public safety as the reason for the scrub.

Launch has been rescheduled for 6:22 p.m. EDT (22:22 UTC), about 15 minutes after sunset at the Mid-Atlantic Regional Spaceport, and the Antares blastoff should be visible along much of the US eastern seaboard – stretching from Maine to South Carolina.

The scrub caused disappointment, as the highly-anticipated launch had perfect weather and was expected to be visible to millions up and down the Atlantic shoreline. Photographers had also hoped to capture a spectacular night-time launch with the crescent Moon nearby and the Space Station flying overhead shortly after launch.

Monday’s launch window was only 10 minutes long due to a short opportunity for the spacecraft to reach the space station’s orbit. The boat was said to have a single passenger and was without a radio.

If the weather holds, the launch should still be visible along the Eastern seaboard on Tuesday. See our complete guide to viewing the launch here, and Orbital may provide updated viewing maps here.

NASA Television coverage of Tuesday’s launch will begin at 5:30 p.m. EDT, and you can watch live below. A post-launch news conference will follow at approximately 8 p.m.

The Antares will launch the Cygnus spacecraft filled with over 5,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-3 mission is Orbital Sciences’ third contracted cargo delivery flight to the space station for NASA.

A Tuesday launch will result in the Cygnus spacecraft arriving at the space station early Sunday, Nov. 2. NASA TV coverage of rendezvous and berthing will begin at 3:30 a.m. with grapple at approximately 4:58 a.m.



Broadcast live streaming video on Ustream

Orbital Antares GO to WOW US East Coast Spectators for 1st Night Launch on Oct. 27

NASA WALLOPS FLIGHT FACILITY, VA – An Orbital Sciences Corp. commercial Antares rocket was given the GO for its first night launch on Oct. 27, following a launch readiness review on Sunday, Oct. 26, between managers from Orbital Sciences Corp. of Dulles, Virginia, and NASA.

The rocket was rolled to the launch pad and erected. Technicians are putting the final touches on the rocket to prepare it for flight to the International Space Station (ISS).

NASA and Orbital Sciences are targeting Antares for blastoff at 6:45 p.m. EDT on Oct. 27 from beachside Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops Island Flight Facility on Virginia’s eastern shore.

There is a 10 minute launch window to get Antares off the ground as the launch pad moves into the plane of the space stations orbit. The slightly longer launch window is due to the extra thrust available from using a new, more powerful ATK built upper stage engine.

Technicians processing Antares rocket on Oct 26 to prepare for first night launch from NASA’s Wallops Flight Facility, VA, on Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
Technicians processing Antares rocket on Oct 26 to prepare for first night launch from NASA’s Wallops Flight Facility, VA, on Oct. 27 at 6:45 p.m. Credit: Ken Kremer – kenkremer.com

The rare spectacle of a night launch within view of tens of millions could WOW hordes of US East Coast residents in densely populated areas up and down the Atlantic shoreline – weather permitting.

The current forecast calls for an almost unheard of 98% chance of favorable weather conditions at launch time.

Depending on local weather conditions, the Antares blastoff will be visible along much of the US eastern seaboard – stretching from Maine to South Carolina.

Orbital 3 Launch from NASA Wallops Island, VA on Oct. 27, 2014- Time of First Sighting Map.  This map shows the rough time at which you can first expect to see Antares after it is launched on Oct. 27, 2014. It represents the time at which the rocket will reach 5 degrees above the horizon and varies depending on your location . We have selected 5 degrees as it is unlikely that you'll be able to view the rocket when it is below 5 degrees due to buildings, vegetation, and other terrain features. However, depending on your local conditions the actual time you see the rocket may be earlier or later. As an example, using this map when observing from Washington, DC shows that Antares will reach 5 degrees above the horizon approximately 117 seconds after launch (L + 117 sec).   Credit: Orbital Sciences
Orbital 3 Launch from NASA Wallops Island, VA on Oct. 27, 2014- Time of First Sighting Map. This map shows the rough time at which you can first expect to see Antares after it is launched on Oct. 27, 2014. It represents the time at which the rocket will reach 5 degrees above the horizon and varies depending on your location . We have selected 5 degrees as it is unlikely that you’ll be able to view the rocket when it is below 5 degrees due to buildings, vegetation, and other terrain features. However, depending on your local conditions the actual time you see the rocket may be earlier or later. As an example, using this map when observing from Washington, DC shows that Antares will reach 5 degrees above the horizon approximately 117 seconds after launch (L + 117 sec). Credit: Orbital Sciences

For precise viewing locations and sighting times, see the collection of detailed maps and trajectory graphics courtesy of Orbital Sciences and NASA in my prior story with a complete viewing guide on “How to See the Antares Launch.”

Antares is carrying Orbital’s privately developed Cygnus pressurized cargo freighter loaded with nearly 5000 pounds (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission dubbed Orb-3 bound for the International Space Station (ISS).

Orbital Sciences Antares rocket stand erect and ready for blastoff the day before its first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket stands erect and ready for blastoff the day before its first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 27 at 6:45 p.m. Credit: Ken Kremer – kenkremer.com

This is the heaviest cargo load yet lofted by a Cygnus. Some 800 pounds additional cargo is loaded on board compared to earlier flights, that’s enabled by using the more powerful ATK CASTOR 30XL second stage for the first time.

Research gear and experiments account for about 1600 pounds (720 kg), or about one third of Cygnus total cargo load.

Among the items aboard are 32 cubesats and deployers, a 6000 psi high pressure replacement nitrogen tank needed for spacewalks from the Quest airlock, experiments enabling the first space-based observations of meteors entering Earth’s atmosphere, determination of how blood flows from the brain to the heart in the absence of gravity, investigations on the impact of space travel on both the human immune system and an individual’s microbiome, the collection of microbes that live in and on the human body, and student science investigations from the SSEP/NCESSE.

“There is nothing more exciting than spaceflight,” said Frank Culbertson, Orbital’s executive vice president of the advanced programs group, at a pre-launch briefing at NASA Wallops.

“It is important to inspire the next generation of scientists. We need to keep the kids inspired to study math and science and keep going back to space. If we stop going to space, it will be very hard to restart.”

On-Ramp to the Orbital Sciences Antares rocket and International Space Station - ready for blastoff the day before its first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
On-Ramp to the Orbital Sciences Antares rocket and International Space Station – ready for blastoff the day before its first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 27 at 6:45 p.m. Credit: Ken Kremer – kenkremer.com

This Cygnus resupply module, dubbed “SS Deke Slayton,” honors one of America’s original Mercury 7 astronauts, Donald “Deke” K. Slayton. He flew on the Apollo-Soyuz Test Project mission in 1975 and championed commercial space endeavors after retiring from NASA in 1982. Slayton passed away in 1993.

The Orbital-3, or Orb-3, mission is the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion.

Orbital Sciences is under contract to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for the eight ISS flight.

NASA Television will broadcast live coverage of the launch, including pre- and post-launch briefings and arrival at the station. Launch coverage begins at 5:45 p.m. EDT.

NASA will broadcast the Antares launch live on NASA TV starting at 5:45 p.m. Monday – http://www.nasa.gov/nasatv

You can also watch the pre- and post launch briefings on Monday on NASA TV.

Of course the absolute best viewing will be locally in the mid-Atlantic region closest to Wallops Island.

Locally at Wallops you’ll get a magnificent view and hear the rockets thunder at the NASA Wallops Visitor Center or other local spots around the Chincoteague National Wildlife Refuge area.

For more information about the Wallops Visitors Center, including directions, see: http://www.nasa.gov/centers/wallops/visitorcenter

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about Commercial Space, Orion and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations:

Oct 27/28: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA

How to See Spectacular Prime Time Night Launch of Antares Commercial Rocket to ISS on Dec. 19

Antares Launch – Maximum Elevation Map
The Antares nighttime launch will be visible to millions of spectators across a wide area of the Eastern US -weather permitting. This map shows the maximum elevation (degrees above the horizon) that the Antares rocket will reach during the Dec 19, 2013 launch depending on your location along the US east coast. Credit: Orbital Sciences[/caption]

UPDATE: The launch of Cygnus has been delayed until no earlier than January 7, 2014 due to the coolant leak at the International Space Station and necessary spacewalks to fix the problem. You can read more about the issue here and here.

WALLOPS ISLAND, VA – Orbital Sciences Corp. is marching forward with plans for a spectacular night blastoff of the firms privately developed Antares rocket and Cygnus cargo spacecraft on Thursday, Dec. 19 from a seaside pad at Wallops Island, Virginia on a mission for NASA that’s bound for the International Space Station (ISS).

The nighttime Antares liftoff is currently scheduled for prime time – at 9:19 p.m. EST from Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops Island, Virginia. It should be easily visible to tens of millions of residents along a wide swath of the US East Coast spanning from South Carolina to southern Maine – weather permitting.

Here’s our guide on “How to See the Antares/Cygnus Dec. 19 Night Launch” – with your own eyes – complete with viewing maps and trajectory graphics from a variety of prime viewing locations; including Philadelphia, NYC, Baltimore and historic landmarks in Washington, DC.

Update: launch postponed to mid-January 2014 to allow NASA astronauts to conduct 3 EVA’s to swap out the ammonia pump module and restore full cooling capacity to the ISS

It will be visible to spectators inland as well, stretching possibly into portions of West Virginia and western Pennsylvania.

For example; Here’s the expected view from Rocky’s famous workout on the steps of the Philadelphia Art Museum.

Philadelphia
Philadelphia

The viewing maps are courtesy of Orbital Sciences, the private company that developed both the Antares rocket and Cygnus resupply vessel aimed at keeping the ISS fully stocked and operational for science research.

Up top is the map showing the maximum elevation the rocket will reach in the eastern United States.

Capitol-East-Front-Steps
Capitol-East-Front-Steps

The flight is designated the Orbital-1, or Orb-1 mission.

Orb-1 is the first of eight commercial cargo resupply missions to the ISS by Orbital according to its Commercial Resupply Services (CRS) contract with NASA.

Of course you can still view the launch live via the NASA TV webcast.

This marks the maiden night launch of the two stage Antares rocket following a pair of daytime test and demonstration launches earlier this year, in April and September.

It’s important to note that the Dec. 19 liftoff is still dependent on NASA engineers resolving the significant issue with the ammonia cooling system that popped up late last week when a critical flow control valve malfunctioned.

If the pump valve can’t be brought back online, two American astronauts may make two or three unscheduled spacewalks starting later this week.

So in the event spacewalks are required, Antares launch could still slip a few days to the end of the launch window around Dec. 21 or Dec. 22. Thereafter the launch would be postponed until January 2014.

Battery Park, NYC
Battery Park, NYC

Here’s your chance to witness a mighty rocket launch – from the comfort of your home and nearby locations along the east coast.

And its smack dab in the middle of the Christmas and holiday season resplendent with shining bright lights.

Weather outlook appears rather promising at this time – 95% favorable chance of lift off.

National Mall, Washington, DC
National Mall, Washington, DC

The rocket was rolled out to the Wallops launch pad this morning by Orbital’s technicians.

Cygnus is loaded with approximately 1465 kg (3,230 lbs.) of cargo for the ISS crew for NASA.

NASA Television coverage of the Antares launch will begin at 8:45 p.m. on Dec. 19 – www.nasa.gov/ntv

Stay tuned here for Ken’s Antares launch reports from NASA Wallops Flight Facility, VA.

Ken Kremer

Iwo Jima memorial
Iwo Jima memorial
Dover
Dover

Astrophoto: Seeing the Cygnus Capsule Before Its Demise

Here’s a nice photo of the trails in the sky from the International Space Station and Orbital Science’s Cygnus freighter. This was captured just a few hours after Cygnus was undocked from the station on October 22, 2013. Astrophotographer Wendy Clark says to “please ignore my garden spaceship to the right,” but sorry, having a model of the starship Enterprise in your yard is just too wonderful to ignore!

This is a 20 sec exposure at ISO 1600 f4.5, 18mm, taken at 19.25 BST. The brightened spot is a flare (sun-glint) from one of the spacecraft.

And about an hour ago from this posting, Orbital Sciences confirmed that the Cygnus had deorbited:

Cygnus’ mission elapsed time (launch through deorbit) was 35 days 3 hours 18 minutes 27 seconds

Here’s another great photo of the two spacecraft together in the sky from Germany by Wolfgang Dzieran:

The International Space Station and the Cygnus capsule on October 22, 2013, as seen from from Bad Lippspringe, Eastwestphalia, Germany. Credit and copyright: Wolfgang Dzieran.
The International Space Station and the Cygnus capsule on October 22, 2013, as seen from from Bad Lippspringe, Eastwestphalia, Germany. Credit and copyright: Wolfgang Dzieran.

He explains what you are seeing in the photo: “The long, light line is the track in the middle is the ISS. The second track, which runs almost parallel to the orbit of the ISS is the Cygnus supply module, and at one point becomes conspicuously bright. This bright illumination is called a flare,” Dzieran writes on his website. “At top right and bottom you can see the traces of two aircraft.

Thanks to both astrophotographers for sharing their images!

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.