Ground-Based Lasers Could Accelerate Spacecraft to Other Stars

An artist's illustration of a light-sail powered by a radio beam (red) generated on the surface of a planet. The leakage from such beams as they sweep across the sky would appear as Fast Radio Bursts (FRBs), similar to the new population of sources that was discovered recently at cosmological distances. Credit: M. Weiss/CfA

The future of space exploration includes some rather ambitious plans to send missions farther from Earth than ever before. Beyond the current proposals for building infrastructure in cis-lunar space and sending regular crewed missions to the Moon and Mars, there are also plans to send robotic missions to the outer Solar System, to the focal length of our Sun’s gravitational lens, and even to the nearest stars to explore exoplanets. Accomplishing these goals requires next-generation propulsion that can enable high thrust and consistent acceleration.

Focused arrays of lasers – or directed energy (DE) – and lightsails are a means that is being investigated extensively – such as Breakthrough Starshot and Swarming Proxima Centauri. Beyond these proposals, a team from McGill University in Montreal has proposed a new type of directed energy propulsion system for exploring the Solar System. In a recent paper, the team shared the early results of their Laser-Thermal Propulsion (LTP) thruster facility, which suggests that the technology has the potential to provide both high thrust and specific impulse for interstellar missions.

Continue reading “Ground-Based Lasers Could Accelerate Spacecraft to Other Stars”

NASA Selects New Technology to Help Search for Life on Mars

Artist's impression of a Mars habitat in conjunction with other surface elements on Mars. Credit: NASA

The day when human beings finally set foot on Mars is rapidly approaching. Right now, NASA, the China National Space Agency (CNSA), and SpaceX have all announced plans to send astronauts to the Red Planet “by 2040”, “in 2033”, and “before 2030”, respectively. These missions will lead to the creation of long-term habitats that will enable return missions and scientific research that will investigate everything from the geological evolution of Mars to the possible existence of past (or even present) life. The opportunities this will create are mirrored only by the challenges they will entail.

One of the greatest challenges is ensuring that crews have access to water, which means that any habitats must be established near an underground source. Similarly, scientists anticipate that if there is still life on Mars today, it will likely exist in “briny patches” beneath the surface. A possible solution is to incorporate a system for large-scale water mining operations on Mars that could screen for lifeforms. The proposal, known as an Agnostic Life Finding (ALF) system, was one of thirteen concepts selected by NASA’s Innovative Advanced Concept (NIAC) program this year for Phase I development.

Continue reading “NASA Selects New Technology to Help Search for Life on Mars”

NASA Tightbeams a Cat Video From 31 Million Kilometers Away

This 15-second clip shows the first ultra-high-definition video sent via laser from deep space, featuring a cat named Taters chasing a laser with test graphics overlayed. Credit: NASA/JPL-Caltech

NASA’s Deep Space Network (DSN) has been responsible for maintaining contact with missions venturing beyond Low Earth Orbit (LEO) since 1963. In addition to relaying communications and instructions, the DSN has sent breathtaking images and invaluable science data back to Earth. As missions become more sophisticated, the amount of data they can gather and transmit is rapidly rising. To meet these growing needs, NASA has transitioned to higher-bandwidth radio spectrum transmissions. However, there is no way to increase data rates without scaling the size of its antennas or the power of its radio transmitters.

To meet these needs, NASA has created the Deep Space Optical Communications (DSOC), which relies on focused light (lasers) to stream very high-bandwidth video and other data from deep space. Compared to conventional radio, optical arrays are typically faster, more secure, lighter, and more flexible. In a recent test, NASA used this technology demonstrator to beam a video to Earth from a record-setting distance of 31 million km (19 million mi) – about 80 times the distance between the Earth and the Moon. The video, featuring a cat named Taters, marks a historic milestone and demonstrates the effectiveness of optical communications.

Continue reading “NASA Tightbeams a Cat Video From 31 Million Kilometers Away”

Magnetic Fusion Plasma Engines Could Carry us Across the Solar System and Into Interstellar Space

A new study offers a new means of propulsion that could revolutionize space travel - the Magnetic Fusion Plasma Drive (MFPD). Credit: Created with Imagine

Missions to the Moon, missions to Mars, robotic explorers to the outer Solar System, a mission to the nearest star, and maybe even a spacecraft to catch up to interstellar objects passing through our system. If you think this sounds like a description of the coming age of space exploration, then you’d be correct! At this moment, there are multiple plans and proposals for missions that will send astronauts and/or probes to all of these destinations to conduct some of the most lucrative scientific research ever performed. Naturally, these mission profiles raise all kinds of challenges, not the least of which is propulsion.

Simply put, humanity is reaching the limits of what conventional (chemical) propulsion can do. To send missions to Mars and other deep space destinations, advanced propulsion technologies are required that offer high acceleration (delta-v), specific impulse (Isp), and fuel efficiency. In a recent paper, Leiden Professor Florian Neukart proposes how future missions could rely on a novel propulsion concept known as the Magnetic Fusion Plasma Drive (MFPD). This device combines aspects of different propulsion methods to create a system that offers high energy density and fuel efficiency significantly greater than conventional methods.

Continue reading “Magnetic Fusion Plasma Engines Could Carry us Across the Solar System and Into Interstellar Space”

Power on the Moon. What Will it Take to Survive the Lunar Night?

Artist rendering of an Artemis astronaut exploring the Moon’s surface during a future mission. Credit: NASA

With the help of international and commercial partners, NASA is sending astronauts back to the Moon for the first time in over fifty years. In addition to sending crewed missions to the lunar surface, the long-term objective of the Artemis Program is to create the necessary infrastructure for a program of “sustained lunar exploration and development.” But unlike the Apollo missions that sent astronauts to the equatorial region of the Moon, the Artemis Program will send astronauts to the Moon’s South Pole-Aitken Basin, culminating in the creation of a habitat (the Artemis Basecamp).

This region contains many permanently-shadowed craters and experiences a night cycle that lasts fourteen days (a “Lunar Night“). Since solar energy will be limited in these conditions, the Artemis astronauts, spacecraft, rovers, and other surface elements will require additional power sources that can operate in cratered regions and during the long lunar nights. Looking for potential solutions, the Ohio Aerospace Institute (OAI) and the NASA Glenn Research Center recently hosted two space nuclear technologies workshops designed to foster solutions for long-duration missions away from Earth.

Continue reading “Power on the Moon. What Will it Take to Survive the Lunar Night?”

Clearing the Air on a Trip to Mars: the NASA Particle Partition Challenge!

NASA is seeking innovative ideas for its Particle Partition Challenge. Credit: NASA/HeroX

In the coming decade, NASA and the China National Space Agency (CNSA) will send the first astronaut crews to Mars. Unlike missions to the International Space Station (ISS) or the Moon, crewed missions to Mars present several unique challenges because of the distance and transit times involved. For instance, it is only practical to send missions to Mars when our two planets are closest to each other in their orbits (known as “Opposition“), which occurs every 26 months. Even then, it can take up to nine months for spacecraft to reach Mars, creating all kinds of logistics headaches.

On top of that, there’s the need for life support systems that will maintain a breathable atmosphere inside the spacecraft. Like the system that allows astronauts to live aboard the ISS for extended periods, methods are needed to scrub waste carbon from the air and safely sequester it. HeroX, the world’s leading platform for crowdsourced solutions, has launched the NASA Particle Partition Challenge. With a total prize purse of $45,000, this competition is looking for innovative ideas on how to ensure that astronauts can breathe comfortably on the way to Mars!

Continue reading “Clearing the Air on a Trip to Mars: the NASA Particle Partition Challenge!”