How Massive Is A Neutrino? Cosmology Experiment Gives A Clue

There have been a lot of attempts over the years to figure out the mass of a neutrino (a type of elementary particle). A new analysis not only comes up with a number, but also combines that with a new understanding of the universe’s evolution.

The research team investigated the mass further after observing galaxy clusters with the Planck observatory, a space telescope with the European Space Agency. As the researchers examined the cosmic microwave background (the afterglow of the Big Bang), they saw a difference between their observations and other predictions.

“We observe fewer galaxy clusters than we would expect from the Planck results and there is a weaker signal from gravitational lensing of galaxies than the CMB would suggest. A possible way of resolving this discrepancy is for neutrinos to have mass. The effect of these massive neutrinos would be to suppress the growth of dense structures that lead to the formation of clusters of galaxies,” the researchers stated.

The HST WFPC2 image of gravitational lensing in the galaxy cluster Abell 2218, indicating the presence of large amount of dark matter (credit Andrew Fruchter at STScI).
The HST WFPC2 image of gravitational lensing in the galaxy cluster Abell 2218, indicating the presence of large amount of dark matter (credit Andrew Fruchter at STScI).

Neutrinos are a tiny piece of matter (along with other particles such as quarks and electrons). The challenge is, they’re hard to observe because they don’t react very easily to matter. Originally believed to be massless, newer particle physics experiments have shown that they do indeed have mass, but how much was not known.

There are three different flavors or types of neutrinos, and previous analysis suggested the sum was somewhere above 0.06 eV (less than a billionth of a proton’s mass.) The new result suggests it is closer to 0.320 +/- 0.081 eV, but that still has to be confirmed by further study. The researchers arrived at that by using the Planck data with “gravitational lensing observations in which images of galaxies are warped by the curvature of space-time,” they stated.

“If this result is borne out by further analysis, it not only adds significantly to our understanding of the sub-atomic world studied by particle physicists, but it would also be an important extension to the standard model of cosmology which has been developed over the last decade,” the researchers stated.

The research was done by the University of Manchester’s Richard Battye and the University of Nottingham’s Adam Moss. A paper on the work is published in Physical Review Letters and is also available in preprint version on Arxiv.

What Is The Evidence For The Big Bang?

Almost all astronomers agree on the theory of the Big Bang, that the entire Universe is spreading apart, with distant galaxies speeding away from us in all directions. Run the clock backwards to 13.8 billion years ago, and everything in the Cosmos started out as a single point in space. In an instant, everything expanded outward from that location, forming the energy, atoms and eventually the stars and galaxies we see today. But to call this concept merely a theory is to misjudge the overwhelming amount of evidence.

There are separate lines of evidence, each of which independently points towards this as the origin story for our Universe. The first came with the amazing discovery that almost all galaxies are moving away from us.

In 1912, Vesto Slipher calculated the speed and direction of “spiral nebulae” by measuring the change in the wavelengths of light coming from them. He realized that most of them were moving away from us. We now know these objects are galaxies, but a century ago astronomers thought these vast collections of stars might actually be within the Milky Way.

In 1924, Edwin Hubble figured out that these galaxies are actually outside the Milky Way. He observed a special type of variable star that has a direct relationship between its energy output and the time it takes to pulse in brightness. By finding these variable stars in other galaxies, he was able to calculate how far away they were. Hubble discovered that all these galaxies are outside our own Milky Way, millions of light-years away.

So, if these galaxies are far, far away, and moving quickly away from us, this suggests that the entire Universe must have been located in a single point billions of years ago. The second line of evidence came from the abundance of elements we see around us.

In the earliest moments after the Big Bang, there was nothing more than hydrogen compressed into a tiny volume, with crazy high heat and pressure. The entire Universe was acting like the core of a star, fusing hydrogen into helium and other elements.

This is known as Big Bang Nucleosynthesis. As astronomers look out into the Universe and measure the ratios of hydrogen, helium and other trace elements, they exactly match what you would expect to find if the entire Universe was once a really big star.

Line of evidence number 3: cosmic microwave background radiation. In the 1960s, Arno Penzias and Robert Wilson were experimenting with a 6-meter radio telescope, and discovered a background radio emission that was coming from every direction in the sky – day or night. From what they could tell, the entire sky measured a few degrees above absolute zero.

WMAP data of the Cosmic Microwave Background. Credit: NASA
WMAP data of the Cosmic Microwave Background. Credit: NASA

Theories predicted that after a Big Bang, there would have been a tremendous release of radiation. And now, billions of years later, this radiation would be moving so fast away from us that the wavelength of this radiation would have been shifted from visible light to the microwave background radiation we see today.

The final line of evidence is the formation of galaxies and the large scale structure of the cosmos. About 10,000 years after the Big Bang, the Universe cooled to the point that the gravitational attraction of matter was the dominant form of energy density in the Universe. This mass was able to collect together into the first stars, galaxies and eventually the large scale structures we see across the Universe today.

These are known as the 4 pillars of the Big Bang Theory. Four independent lines of evidence that build up one of the most influential and well-supported theories in all of cosmology. But there are more lines of evidence. There are fluctuations in the cosmic microwave background radiation, we don’t see any stars older than 13.8 billion years, the discoveries of dark matter and dark energy, along with how the light curves from distant supernovae.

So, even though it’s a theory, we should regard it the same way that we regard gravity, evolution and general relativity. We have a pretty good idea of what’s going on, and we’ve come up with a good way to understand and explain it. As time progresses we’ll come up with more inventive experiments to throw at. We’ll refine our understanding and the theory that goes along with it.

Most importantly, we can have confidence when talking about what we know about the early stages of our magnificent Universe and why we understand it to be true.

Astronomers Map Dark Matter Throughout the Entire Universe

Warped visions of the cosmic microwave background – the earliest detectable light – allow astronomers to map the total amount of visible and invisible matter throughout the universe.

Roughly 85 percent of all matter in the universe is dark matter, invisible to even the most powerful telescopes, but detectable by its gravitational pull.

In order to find dark matter, astronomers look for an effect called gravitational lensing: when the gravitational pull of dark matter bends and amplifies light from a more distant object. In its most eccentric form it results in multiple arc-shaped images of distant cosmic objects.

The Hubble Space Telescope shows the effect of gravitational lensing as background galaxies are warped by the galaxy cluster MACS J1206. Image Credit: NASA
The Hubble Space Telescope shows the effect of gravitational lensing as background galaxies are warped by the galaxy cluster MACS J1206. Image Credit: NASA

But there’s one caveat here: in order to detect dark matter there must be an object directly behind it. The ‘stars’ have to be aligned.

In a recent study led by Dr. James Geach of the University of Hertfordshire in the United Kingdom, astronomers have set their eyes on the cosmic microwave background (CMB) instead.

“The CMB is the most distant/oldest light we can see,” Dr. Geach told Universe Today. “It can be thought of as a surface, backlighting the entire universe.”

The photons from the CMB have been hurling toward the Earth since the universe was only 380,000 years old. A single photon has had the chance to run into plenty of matter, having effectively probed all the matter in the universe along its line of sight.

“So our view of the CMB is a bit distorted from what it intrinsically looks like – a bit like looking at the pattern on the bottom of a swimming pool,” Dr. Geach said.

By noting the small distortions in the CMB, we can probe all of the dark matter throughout the entire universe. But doing just this is extremely challenging.

The team observed the southern sky with the South Pole Telescope, a 10 meter telescope designed for observations in the microwave. This large, groundbreaking survey produced a CMB map of the southern sky, which was consistent with previous CMB data from the Planck satellite.

The characteristic signatures of gravitational lensing by intervening matter can not be extracted by eye. Astronomers relied on the use of a well-developed mathematical procedure. We wont go into the nasty details.

This produced a “map of the total projected mass density between us and the CMB. That’s quite incredible if you think about it – it’s an observational technique to map all of the mass in the universe, right back to the CMB,” Dr. Geach explained.

But the team didn’t finish their analysis there. Instead, they continued to measure the CMB lensing at the positions of quasars – powerful supermassive black holes in the centers of the earliest galaxies.

“We found that regions of the sky with a large density of quasars have a clearly stronger CMB lensing signal, implying that quasars are indeed located in large-scale matter structures,” Dr. Ryan Hickox of Dartmouth College – second author on the study – told Universe Today.

Finally, the CMB map was used to determine the mass of these dark matter halos. These results matched those determined in older studies, which looked at how the quasars clustered together in space, with no reference to the CMB at all.

Consistent results between two independent measurements is a powerful scientific tool. According to Dr. Hickox, it shows that “we have a strong understanding of how supermassive black holes reside in large-scale structures, and that (once again) Einstein was right.”

The paper has been accepted for publication in the Astrophysical Journal Letters and is available for download here.

This Very Old Cosmic Light Has A Bend To It

Leftover radiation from the Big Bang — that expansion that kick-started the universe — can be bent by huge cosmic structures, just like other light that we see in the universe. While the finding seems esoteric at first glance, scientists say the discovery could pave the way for finding a similar kind of signal that indicate the presence of gravitational waves in the moments after the universe was born.

That light is called the cosmic microwave background and is the radiation that was visible when the universe became transparent to radiation, 380,000 years after the Big Bang. A tiny bit of the CMB is polarized. There are two types of polarized light in the CMB: E-modes (first detected in 2002) and B-modes (which were just detected using a telescope in Antarctica and ESA’s Herschel space observatory.

“[B-modes] can arise in two ways,” the European Space Agency wrote in a press release.

“The first involves adding a twist to the light as it crosses the Universe and is deflected by galaxies and dark matter – a phenomenon known as gravitational lensing. The second has its roots buried deep in the mechanics of a very rapid phase of enormous expansion of the Universe, which cosmologists believe happened just a tiny fraction of a second after the Big Bang – ‘inflation’.”

More results are on the way from ESA’s Planck telescope in 2014, at which point scientists hope to see this B-mode of the second type. For now, check out the full study in Physical Review Letters. There is also a preprint version available on Arxiv.

Sources: ESA and ESA Herschel

Big Bang’s Sound-Like Waves Show Up In Lab Simulation

Tracing back to the Big Bang. Image credit: Ivo Labbé

An ultracold vacuum chamber ran a simulation of the early universe and came up with some interesting findings about how the environment looked shortly after the Big Bang occurred.

Specifically, the atoms clustered in patterns similar to the cosmic microwave background — believed to be the echo of the intense burst that formed the beginning of the universe. Scientists have mapped the CMB at progressively higher resolution using several telescopes, but this experiment is the first of its kind to show how structure evolved at the beginning of time as we understand it.

The Big Bang theory (not to be confused with the popular television show) is intended to describe the universe’s evolution. While many pundits say it shows how the universe came “from nothing”, the concordance cosmological model that describes the theory says nothing about where the universe came from. Instead, it focuses on applying two big physics models (general relativity and the standard model of particle physics). Read more about the Big Bang here.

CMB is, more simply stated, electromagnetic radiation that fills the Universe. Scientists believe it shows an echo of a time when the Universe was much smaller, hotter and denser, and filled to the brim with hydrogen plasma. The plasma and radiation surrounding it gradually cooled as the Universe grew bigger. (More information on the CMB is here.) At one time, the glow from the plasma was so dense that the Universe was opaque, but transparency increased as stable atoms formed. But the leftovers are still visible in the microwave range.

WMAP data of the Cosmic Microwave Background. Credit: NASA
WMAP data of the Cosmic Microwave Background. Credit: NASA

The new research used ultracold cesium atoms in a vacuum chamber at the University of Chicago. When the team cooled these atoms to a billionth of a degree above absolute zero (which is -459.67 degrees Fahrenheit, or -273.15 degrees Celsius), the structures they saw appeared very similar to the CMB.

By quenching the 10,000 atoms in the experiment to control how strongly the atoms interact with each other, they were able to generate a phenomenon that is, very roughly speaking, similar to how sound waves move in air.

“At this ultracold temperature, atoms get excited collectively,” stated Cheng Chin, a physics researcher at the University of Chicago who participated in the research. This phenomenon was first described by Russian physicist Andrei Sakharov, and is known as Sakharov acoustic oscillations.

So why is the experiment important? It allows us to more closely track what happened after the Big Bang.

Atom density is greater at left (the beginning of the experiment) than 80 milliseconds after the simulated Big Bang. Credit: Chen-Lung Hung
Atom density is greater at left (the beginning of the experiment) than 80 milliseconds after the simulated Big Bang. Credit: Chen-Lung Hung

The CMB is simply a frozen moment of time and is not evolving, requiring researchers to delve into the lab to figure out what is happening.

“In our simulation we can actually monitor the entire evolution of the Sakharov oscillations,” said Chen-Lung Hung, who led the research, earned his Ph.D. in 2011 at the University of Chicago, and is now at the California Institute of Technology.

Both Hung and Chin plan to do more work with the ultracold atoms. Future research directions could include things such as how black holes work, or how galaxies were formed.

You can read the published research online on Science‘s website.

Source: University of Chicago

Weekly Space Hangout – August 2, 2013

It’s time for another Weekly Space Hangout, where we give you a rundown of the big space news stories of the week, from a team of scientists and space journalists.

Host: Fraser Cain

Participants: Sondy Springmann, Alan Boyle, Brian Koberlein, Nicole Gugliucci, David Dickinson

Stories:
Alan Boyle Visits Blue Origin Facility
Arecibo Images 2003 DZ15
Comet ISON Will or Won’t Fizzle
Polarization of the Cosmic Microwave
Update on the Spacesuit Leak

We record the Weekly Space Hangout live on Google+ every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch the show live here on Universe Today, or the archived version on YouTube.

Watch Live Webcast: Oldest Light in the Universe from Planck

Earlier this year, a new map of the Cosmic Microwave Background from the Planck spacecraft revealed our Universe was a bit older and is expanding a tad more slowly that previously thought. Additionally, there are certain large scale features that cosmologists cannot readily explain. In fact, because of this finding — possible because of the Planck satellite — we may need to modify, amend or even fundamentally change our description of the Universe’s first moments.

Today, July 31, at 19:00 UTC (12:00 p.m. PDT, 3:00 pm EDT) the Kavli Foundation is hosting a live Google+ Hangout: “A New Baby Picture of the Universe.” You can watch in the player embedded below. You’ll have the chance to ask your questions to Planck scientists by posting on Twitter with the hashtag #KavliAstro, or by email to [email protected]. Questions can be sent prior and during the live webcast. If you miss it live, you can watch the replay here, as well.

You will hear from three leading members of the Planck research team — George Efstathiou and Anthony Lasenby of the Kavli Institute for Cosmology at the University of Cambridge, and Krzysztof Gorski, Senior Research Scientist at the Jet Propulsion Laboratory in Pasadena, CA and faculty member at the Warsaw University Observatory in Poland — and they’ll answer your questions about what was found and what this means to our understanding of the universe.

See the Kavli Foundation page for this event for more details.

Meet Hopper: A Key Player in the Planck Discovery Story

Behind every modern tale of cosmological discovery is the supercomputer that made it possible. Such was the case with the announcement yesterday from the European Space Agencies’ Planck mission team which raised the age estimate for the universe to 13.82 billion years and tweaked the parameters for the amounts dark matter, dark energy and plain old baryonic matter in the universe.

Planck built upon our understanding of the early universe by providing us the most detailed picture yet of the cosmic microwave background (CMB), the “fossil relic” of the Big Bang first discovered by Penzias & Wilson in 1965. Planck’s discoveries built upon the CMB map of the universe observed by the Wilkinson Microwave Anisotropy Probe (WMAP) and serves to further validate the Big Bang theory of cosmology.

But studying the tiny fluctuations in the faint cosmic microwave background isn’t easy, and that’s where Hopper comes in. From its L2 Lagrange vantage point beyond Earth’s Moon, Planck’s 72 onboard detectors observe the sky at 9 separate frequencies, completing a full scan of the sky every six months. This first release of data is the culmination of 15 months worth of observations representing close to a trillion overall samples. Planck records on average of 10,000 samples every second and scans every point in the sky about 1,000 times.

That’s a challenge to analyze, even for a supercomputer. Hopper is a Cray XE6 supercomputer based at the Department of Energy’s National Energy Research Scientific Computing center (NERSC) at the Lawrence Berkeley National Laboratory in California.  Named after computer scientist and pioneer Grace Hopper,  the supercomputer has a whopping 217 terabytes of memory running across 153,216 computer cores with a peak performance of 1.28 petaflops a second. Hopper placed number five on a November 2010 list of the world’s top supercomputers. (The Tianhe-1A supercomputer at the National Supercomputing Center in Tianjin China was number one at a peak performance of 4.7 petaflops per second).

One of the main challenges for the team sifting through the flood of CMB data generated by Planck was to filter out the “noise” and bias from the detectors themselves.

“It’s like more than just bugs on a windshield that we want to remove to see the light, but a storm of bugs all around us in every direction,” said Planck project scientist Charles Lawrence. To overcome this, Hopper runs simulations of how the sky would appear to Planck under different conditions and compares these simulations against observations to tease out data.

“By scaling up to tens of thousands of processors, we’ve reduced the time it takes to run these calculations from an impossible 1,000 years to a few weeks,” said Berkeley lab and Planck scientist Ted Kisner.

But the Planck mission isn’t the only data that Hopper is involved with. Hopper and NERSC were also involved with last year’s discovery of the final neutrino mixing angle. Hopper is also currently involved with studying wave-plasma interactions, fusion plasmas and more. You can see the projects that NERSC computers are tasked with currently on their site along with CPU core hours used in real time. Maybe a future descendant of Hopper could give Deep Thought of Hitchhiker’s Guide to the Galaxy fame competition in solving the answer to Life, the Universe, and Everything.

Also, a big congrats to Planck and NERSC researchers. Yesterday was a great day to be a cosmologist. At very least, perhaps folks won’t continue to confuse the field with cosmetology… trust us, you don’t want a cosmologist styling your hair!

Planck Spacecraft Loses Its Cool(ant) But Keeps Going

[/caption]

After two and a half years of observing the Cosmic Microwave Background, the ESA Planck spacecraft’s High Frequency Instrument ran out of its on-board coolant gases over this past weekend, reaching the end of its very successful mission. But that doesn’t mean the end for Planck observations. The Low Frequency Instrument, which does not need to be super-cold (but is still at a bone-chilling -255 C), will continue taking data.

“The Low Frequency Instrument will now continue operating for another year,” said Richard Davis, of the University of Manchester in the UK. “During that time it will provide unprecedented sensitivity at the lower frequencies.”

From its location at the Earth/Sun’s L2 Lagrangian point, Planck was designed to ‘see’ the microwaves from the CMB and detects them by measuring temperature. The expansion of the Universe means that the CMB is brightest when seen in microwave light, with wavelengths between 100 and 10,000 times longer than visible light. To measure such long wavelengths Planck’s detectors have to be cooled to very low temperatures. The colder the spacecraft, the lower the temperatures the spacecraft can detect.

The High Frequency Instrument (HFI) was cooled to as close to 2.7K (about –270°C, near absolute zero) as possible.

Planck worked perfectly for 30 months, about twice the span originally required, and completed five full-sky surveys with both instruments.

“Planck has been a wonderful mission; spacecraft and instruments have been performing outstandingly well, creating a treasure trove of scientific data for us to work with,” said Jan Tauber, ESA’s Planck Project Scientist.

While it was the combination of both instruments that made Planck so powerful, there is still work for the LFI to do.

Now and Then. This single all-sky image simultaneously captured two snapshots that straddle virtually the entire 13.7 billion year history of the universe. One of them is ‘now’ – our galaxy and its structures seen as they are over the most recent tens of thousands of years (the thin strip extending across the image is the edge-on plane of our galaxy – the Milky Way). The other is ‘then’ – the red afterglow of the Big Bang seen as it was just 380,000 years after the Big Bang (top and bottom of image). The time between these two snapshots therefore covers about 99.997% of the 13.7 billion year age of the universe. The image was obtained by the Planck spacecraft. Credit: ESA

The scientists involved in Planck have been busy understanding and analyzing the data since Planck launched in May 2009. Initial results from Planck were announced last year, and with Planck data, scientists have created a map of the CMB identifying which bits of the map are showing light from the early Universe, and which parts are due to much closer objects, such as gas and dust in our galaxy, or light from other galaxies. The scientists have also produced a catalog of galaxy clusters in the distant Universe — many of which had not been seen before — and included some gigantic ‘superclusters,’ which are probably merging clusters.

The scientists expect to release data about star formation later next month, and reveal cosmological findings from the Big Bang and the very early Universe in 2013.

“The fact that Planck has worked so perfectly means that we have an incredible amount of data,” said George Efstathiou, a Planck Survey Scientist from the University of Cambridge. “Analyzing it takes very high-performance computers, sophisticated software, and several years of careful study to ensure that the results are correct.”

Source: ESA, UK Space Agency

Astronomy Without A Telescope – One Crowded Nanosecond

[/caption]

Remember how you could once pick up a book about the first three minutes after the Big Bang and be amazed by the level of detail that observation and theory could provide regarding those early moments of the universe. These days the focus is more on what happened between 1×10-36 and 1×10-32 of the first second as we try to marry theory with more detailed observations of the cosmic microwave background.

About 380,000 years after the Big Bang, the early universe became cool and diffuse enough for light to move unimpeded, which it proceeded to do – carrying with it information about the ‘surface of last scattering’. Before this time photons were being continually absorbed and re-emitted (i.e. scattered) by the hot dense plasma of the earlier universe – and never really got going anywhere as light rays.

But quite suddenly, the universe got a lot less crowded when it cooled enough for electrons to combine with nuclei to form the first atoms. So this first burst of light, as the universe became suddenly transparent to radiation, contained photons emitted in that fairly singular moment – since the circumstances to enable such a universal burst of energy only happened once.

With the expansion of the universe over a further 13.6 and a bit billion years, lots of these photons probably crashed into something long ago, but enough are still left over to fill the sky with a signature energy burst that might have once been powerful gamma rays but has now been stretched right out into microwave. Nonetheless, it still contains that same ‘surface of last scattering’ information.

Observations tell us that, at a certain level, the cosmic microwave background is remarkably isotropic. This led to the cosmic inflation theory, where we think there was a very early exponential expansion of the microscopic universe at around 1×10-36 of the first second – which explains why everything appears so evenly spread out.

However, a close look at the cosmic microwave background (CMB) does show a tiny bit of lumpiness – or anisotropy – as demonstrated in data collected by the aptly-named Wilkinson Microwave Anisotropy Probe (WMAP).

Really, the most remarkable thing about the CMB is its large scale isotropy and finding some fine grain anisotropies is perhaps not that surprising. However, it is data and it gives theorists something from which to build mathematical models about the contents of the early universe.

The apparent quadrupole moment anomalies in the cosmic microwave background might result from irregularities in the early universe - including density fluctuations, dynamic movement (vorticity) or even gravity waves. However, a degree of uncertainty and 'noise' from foreground light sources is apparent in the data, making firm conclusions difficult to draw. Credit: University of Chicago.

Some theorists speak of CMB quadrupole moment anomalies. The quadrupole idea is essentially an expression of energy density distribution within a spherical volume – which might scatter light up-down or back-forward (or variations from those four ‘polar’ directions). A degree of variable deflection from the surface of last scattering then hints at anisotropies in the spherical volume that represents the early universe.

For example, say it was filled with mini black holes (MBHs)? Scardigli et al (see below) mathematically investigated three scenarios, where just prior to cosmic inflation at 1×10-36 seconds: 1) the tiny primeval universe was filled with a collection of MBHs; 2) the same MBHs immediately evaporated, creating multiple point sources of Hawking radiation; or 3) there were no MBHs, in accordance with conventional theory.

When they ran the math, scenario 1 best fits with WMAP observations of anomalous quadrupole anisotropies. So, hey – why not? A tiny proto-universe filled with mini black holes. It’s another option to test when some higher resolution CMB data comes in from Planck or other future missions to come. And in the meantime, it’s material for an astronomy writer desperate for a story.

Further reading: Scardigli, F., Gruber,C. and Chen (2010) Black hole remnants in the early universe.