A Moon Might Have Been Found Orbiting an Exoplanet

An artist's illustration of the Kepler 1625 system. The star in the distance is called Kepler 1625. The gas giant is Kepler 1625B, and the exomoon orbiting it is unnamed. The moon is about as big as Neptune, but is a gas moon. Image: NASA, ESA, and L. Hustak (STScI)
An artist's illustration of the Kepler 1625 system. The star in the distance is called Kepler 1625. The gas giant is Kepler 1625B, and the exomoon orbiting it is unnamed. The moon is about as big as Neptune, but is a gas moon. Image: NASA, ESA, and L. Hustak (STScI)

In the past three decades, the field of extrasolar planet studies has advanced by leaps and bounds. To date, 4,903 extrasolar planets have been confirmed in 3,677 planetary systems, with another 8,414 candidates awaiting confirmation. The diverse nature of these planets, ranging from Super-Jupiters and Super-Earths to Mini-Neptunes and Water Worlds, has raised many questions about the nature of planet formation and evolution. A rather important question is the role and commonality of natural satellites, aka. “exomoons.”

Given the number of moons in the Solar System, it is entirely reasonable to assume that moons are ubiquitous in our galaxy. Unfortunately, despite thousands of know exoplanets, there are still no confirmed exomoons available for study. But thanks to Columbia University’s Professor David Kipping and an international team of astronomers, that may have changed. In a recent NASA-supported study, Kipping and his colleagues report on the possible discovery of an exomoon they found while examining data from the Kepler Space Telescope.

Continue reading “A Moon Might Have Been Found Orbiting an Exoplanet”

At the Heart of the Milky Way, Stars Come Close to Each Other All the Time

The core of the Milky Way. Credit: NASA/JPL-Caltech/S. Stolovy (SSC/Caltech)

We here at Universe Today would like to express our support for Black Lives Matter and the countless people who are currently marching and demonstrating across Canada and the United States. To support Moiya and other black scientists and science communicators in STEM, we’ll be silent on Wednesday. Go to https://www.particlesforjustice.org/ for more info.

At the center of our galaxy resides the Galactic Bulge, a densely-packed region of stars, dust, and gas. Within this massive structure, which spans thousands of light-years, there are an estimated 10 billion stars, most of which are old red giant stars. Because of this density, astronomers have often wondered if a galactic bulge is a likely place to find stars with habitable planets orbiting them.

Essentially, stars that are closely packed together are more likely to experience close encounters with other stars, which can be catastrophic for any planets that orbit them. According to a new study from Columbia University’s Cool Worlds Lab, most stars in the Bulge will experience dozens of close encounters over the course of a billion years, which could have significant implications for long-term habitability in this region.

ThRead more

What are the Odds of Life Emerging on Another Planet?

Artist's impression of the Milky Way Galaxy. Credit: ESO

In 1961, famed astronomer and astrophysicist Frank Drake formulated an equation for estimating the number of extraterrestrial civilizations in our galaxy at any given time. Known as the “Drake Equation“, this formula was a probabilistic argument meant to establish some context for the Search for Extraterrestrial Intelligence (SETI). Of course, the equation was theoretical in nature and most of its variables are still not well-constrained.

For instance, while astronomers today can speak with confidence about the rate at which new stars form, and the likely number of stars that have exoplanets, they can’t begin to say how many of these planets are likely to support life. Luckily, Professor David Kipping of Columbia University recently performed a statistical analysis that indicates that a Universe teeming with life is “the favored bet.”

Continue reading “What are the Odds of Life Emerging on Another Planet?”

One of the TRAPPIST-1 Planets Has an Iron Core

Artist's impression of TRAPPIST-1e, which has a large iron core, according to a recent study. Credit: NASA/JPL-Caltech

In February of 2017, a team of European astronomers announced the discovery of a seven-planet system orbiting the nearby star TRAPPIST-1. Aside from the fact that all seven planets were rocky, there was the added bonus of three of them orbiting within TRAPPIST-1’s habitable zone. Since that time, multiple studies have been conducted to determine whether or not any of these planets could be habitable.

In accordance with this goal, these studies have focused on whether or not these planets have atmospheres, their compositions and their interiors. One of the latest studies was conducted by two researchers from Columbia University’s Cool Worlds Laboratory, who determined that one of the TRAPPIST-1 planets (TRAPPIST-1e) has a large iron core – a finding which could have implications for this planet’s habitability.

Continue reading “One of the TRAPPIST-1 Planets Has an Iron Core”