How Can We Live on Mars?

The Dragn Crew capsule is more than a modernized Apollo capsule. It will land softly and at least on Earth will be reusable while Musk and SpaceX dream of landing Falcon Crew on Mars. (Photo Credits: SpaceX)

Why live on Earth when you can live on Mars? Well, strictly speaking, you can’t. Mars is a completely hostile environment to human life, combining extreme cold with an unbreathable atmosphere and intense radiation. And while it is understood that the planet once had an atmosphere and lots of water, that was billions of years ago!

And yet, if we want to expand into the Solar System, we’ll need to learn how to live on other planets. And Mars is prime real-estate, compared to a lot of other bodies. So despite it being a challenge, given the right methods and technology, it is possible we could one day live on Mars. Here’s how we’ll do it.

Reasons To Go:

Let’s face it, humanity wants (and needs) to go Mars, and for several reasons.  For one, there’s the spirit of exploration, setting foot on a new world and exploring the next great frontier – like the Apollo astronauts did in the late 60s and early 70s.

Artist illustration of a Mars Colony. Image credit: NASA
Artist illustration of a Mars Colony. Image credit: NASA

We also need to go there if we want to create a backup location for humanity, in the event that life on Earth becomes untenable due to things like Climate Change. We could also go there to search for additional resources like water, precious metals, or additional croplands in case we can no longer feed ourselves.

In that respect, Mars is the next, natural destination. There’s also a little local support, as Mars does provide us some raw materials. The regolith, the material which covers the surface, could be used to make concrete, and there are cave systems which could be converted into underground habitats to protect citizens from the radiation.

Elon Musk has stated that the goal of SpaceX is to help humans get to Mars, and they’re designing rockets, landers and equipment to support that. Musk would like to build a Mars colony with about 1 million people. Which is a good choice, as its probably the second most habitable place in our Solar System. Real estate should be pretty cheap, but the commute is a bit much.

And then there’s the great vistas to think about. Mars is beautiful, after a fashion. It looks like a nice desert planet with winds, clouds, and ancient river beds. But maybe, just maybe, the best reason to go there is because it’s hard! There’s something to be said about setting a goal and achieving it, especially when it requires so much hard work and sacrifice.

Reasons NOT To Go:

Yeah, Mars is pretty great… if you’re not made of meat and don’t need to breathe oxygen. Otherwise, it’s incredibly hostile. It’s not much more habitable than the cold vacuum of space. First, there’s no air on Mars. So if you were dropped on the surface, the view would be spectacular. Then you’d quickly pass out, and expire a couple minutes later from a lack of oxygen.

There’s also virtually no air pressure, and temperatures are incredibly cold. And of course, there’s the constant radiation streaming from space. You also might want to note that the soil is toxic, so using it for planting would first require that it be put through a decontamination process.

A post-processed mosaic of MSL Mastcam images from Sol 582 (NASA/JPL-Caltech/MSSS. Edit by Jason Major)
Afternoon on Mars (MSL Mastcam mosaic)(NASA/JPL-Caltech/MSSS. Edit by Jason Major)

Assuming we can deal with those issues, there’s also the major problem of having limited access to spare parts and medical supplies. You can’t just go down to the store when you’re on Mars if your kidney gives out or if your sonic screwdriver breaks.

There will need to be a constant stream of supplies coming from Earth until the Martian economy is built up enough to support itself. And shipping from Earth will be very expensive, which will mean long period between supply drops.

One more big unknown is what the low gravity will do to the human body over months and years. At 40% of Earth normal, the long-term effects are not something we currently have any information on. Will it shorten our lifespan or lengthen it? We just don’t know.

There’s a long list of these types of problems. If we intend to live on Mars, and stay there permanently, we’ll be leaning pretty hard on our technology to keep us alive, never mind making us comfortable!

Possible Solutions:

In order to survive the lack of air pressure and the cold, humans will need pressurized and heated habitats. Martians, the terrestrial kind, will also need a spacesuit whenever they go outside. Every hour they spend outside will add to their radiation exposure, not to mention all the complications that exposure to radiation brings.

Artist's concept of a habitat for a Mars colony. Credit: NASA
Artist’s concept of a habitat for a Mars colony. Credit: NASA

For the long term, we’ll need to figure out how to extract water from underground supplies, and use that to generate breathable air and rocket fuel. And once we’ve reduced the risk of suffocation or dying of dehydration, we’ll need to consider food sources, as we’ll be outside the delivery area of everyone except Planet Express. Care packages could be shipped up from Earth, but that’s going to come with a hefty price tag.

We’ll need to produce our own food too, since we can’t possible hope to ship it all in on a regular basis. Interestingly, although toxic, Martian soil can be used to grow plants once you supplement it and remove some of the harsher chemicals. NASA’s extensive experience in hydroponics will help.

To thrive on Mars, the brave adventurers may want to change themselves, or possibly their offspring. This could lead to genetic engineering to help future generations adapt to the low gravity, higher radiation and lower air pressure. And why stop at humans? Human colonists could also adapt their plants and animals to live there as well.

Finally, to take things to the next level, humanity could make a few planetary renovations. Basically, we could change Mars itself through the process of terraforming. To do this, we’ll need to release megatons of greenhouse gasses to warm the planet, unleashing the frozen water reserves. Perhaps we’ll crash a few hundred comets into the planet to deliver water and other chemicals too.

An artist's conception of future Mars astronauts. Credit: NASA/JPL-Caltech
An artist’s conception of future Mars astronauts. Credit: NASA/JPL-Caltech

This might take thousands, or even millions of years. And the price tag will be, for lack of a better word, astronomical! Still, the technology required to do all this is within our current means, and the process could restore Mars to a place where we could live on it even without a spacesuit.

And even though we may not have all the particulars worked out just yet, there is something to be said about a challenge. As history has shown, there is little better than a seemingly insurmountable challenge to bring out the best in all of us, and to make what seems like an impossible dream a reality.

To quote the late, great John F. Kennedy, who addressed the people of the United States back when they was embarking on a similarly difficult mission:

We choose to go to the Moon! … We choose to go to the Moon in this decade and do the other things, not because they are easy, but because they are hard; because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one we intend to win

What do you think? Would you be part of the Mars terraforming expedition? Tell us in the comments below.

We have written many interesting articles about Mars here at Universe Today. Here’s How Do We Colonize Mars?, Mars Colony Will Have to Wait, Solar Power is Best for Mars Colonies, and Elon Musk is Sending Humans to Mars in 2024.

For more information, check out NASA’s Journey to Mars, and NASA Quest’s Mars Colony Project.

Astronomy Cast also has episodes on the subject, like Episode 52: Mars, and Episode 95: Humans to Mars, Part 2: Colonists.

Student Team Wants to Terraform Mars Using Cyanobacteria

Living Mars. Credit: Kevin Gill
Artist concept of a 'Living' Mars. Credit: Kevin Gill

While scientists believe that at one time, billions of years ago, Mars had an atmosphere similar to Earth’s and was covered with flowing water, the reality today is quite different. In fact, the surface of Mars is so hostile that a vacation in Antarctica would seem pleasant by comparison.

In addition to the extreme cold, there is little atmosphere to speak of and virtually no oxygen. However, a team of students from Germany wants to change that. Their plan is to introduce cyanobacteria into the atmosphere which would convert the ample supplies of CO² into oxygen gas, thus paving the way for possible settlement someday.

The team, which is composed of students and volunteer scientists from the University of Applied Science and the Technical University in Darmstadt, Germany, call their project “Cyano Knights”. Basically, they plan to seed Mars’ atmosphere with cyanobacteria so it can convert Mars’ most abundant gas (CO2, which accounts for 96% of the Martian atmosphere) into something breathable by humans.

The Mars One University Competition poster. Credit: Mars One
Promotional image for the Mars One University Competition. Credit: Mars One

Along with teams from other universities and technical colleges taking part in the Mars One University Competition, the Cyano Knights hope that their project will be the one sent to the Red Planet in advance of the company’s proposed settlers.

This competition officially began this past summer, as part of the Mars One’s drive to enlist the support and participation of universities from all around the world. All those participating will have a chance to send their project aboard the company’s first unmanned lander, which will be sent to Mars in 2018.

Working out of the laboratory of Cell Culture Technology of the University of Applied Science, the Cyano Knights selected cyanobacteria because of its extreme ruggedness. Here on Earth, the bacteria lives in conditions that are hostile to other life forms, hence why they seemed like the perfect candidate.

As the team leader Robert P. Schröder, said to “Cyanobacteria do live in conditions on Earth where no life would be expected. You find them everywhere on our planet! It is the first step on Mars to test microorganisms.”

Cyanobacteria Spirulina. Credit:
Cyanobacteria Spirulina. Credit:

The other reason for sending cyanobacteria to Mars, in advance of humans, is the biological function they perform. As an organism that produces oxygen gas through photosynthesis to obtain nutrients, cyanobacteria are thought to have played a central role in the evolution of Earth’s atmosphere.

It is estimated that 2.7 billion years ago, they were pivotal in converting it from a toxic fume to the nitrogen and oxygen-rich one that we all know and love. This, in turn, led to the formation of the ozone layer which blocks out harmful UV rays and allowed for the proliferation of life.

According to their project description, the cyanobacteria, once introduced, will “deliver oxygen made of their photosynthesis, reducing carbon dioxide and produce an environment for living organisms like us. Furthermore, they can supply food and important vitamins for a healthy nutrition.”

Of course, the team is not sure how much of the bacteria will be needed to make a dent in Mars’ carbon-rich atmosphere, nor how much of the oxygen could be retained. But much like the other teams taking part in this competition, the goal here is to find out how terrestrial organisms will fare in the Martian environment.

Artist's concept of a Martian astronaut standing outside the Mars One habitat. Credit: Bryan Versteeg/Mars One
Artist’s concept of a Martian astronaut standing outside the Mars One habitat. Credit: Bryan Versteeg/Mars One

The Cyano Knights hope that one day, manned mission will be able to take advantage of the oxygen created by these bacteria by either combining it with nitrogen to create breathable air, or recuperating it for consumption over and over again.

Not only does their project call for the use of existing technology, it also takes advantage of studies being conducted by NASA and other space agencies. As it says on their team page: “On the international space station they do experiments with cyanobacteria too. So let us take it to the next level and investigate our toughest life form on Mars finding the best survival species for mankind! We are paving the way for future Mars missions, not only to have breathable air!”

Other concepts include germinating seeds on Mars to prove that it is possible to grow plants there, building a miniature greenhouse, measuring the impact of cosmic surface and solar radiation on the surface, and processing urine into water.

All of these projects are aimed at obtaining data that will contribute to our understanding of the Martian landscape and be vital to any human settlements or manned missions there in the future.

For more information on the teams taking part in the competition, and to vote for who you would like to win, visit the Mars One University Competition page. Voting submission will be accepted until Dec. 31, 2014 and the winning university payload will be announced on Jan. 5, 2015.

Further Reading: CyanoKnights, MarsOne University Competition