A beautiful display of the aurora borealis on June 6 this year. The line of light is the International Space Station; an airplane is off to the left. Credit: Bob King
As an amateur astronomer, two of the most frequently questions I’m asked are “When is the best time to see the aurora borealis and where is the best place?” In terms of place, two locations comes to mind: Churchill, Manitoba and Tromso, Norway. But until such time as the transporter is invented, most of us will be staying closer to home. The simple answer is north and the farther north the better.
As for the time, in the northern border states of the US, auroras occur fairly regularly around the time of solar maximum, when the sun peaks in storm activity. The current solar cycle tops out this summer and fall, so your chances at seeing northern lights are far better now than a year and a half ago when solar activity saw a steep decline during a protracted minimum.
An X3.2-class flare observed by SDO's AIA instrument at 0114 UT on May 14 (NASA/SDO/AIA)
Last night, as Commander Hadfield and the Expedition 35 crew were returning to Earth in their Soyuz spacecraft, the Sun unleashed yet another X-class flare from active region 1748, the third and most powerful eruption yet from the sunspot region in the past 24 hours — in fact, at a level of X3.2, it was the most intense flare observed all year.
And with this dynamic sunspot region just now coming around the Sun’s limb and into view, we can likely expect much more of this sort of activity… along with a steadily increasing chance of an Earth-directed CME.
According to SpaceWeather.com AR1748 has produced “the strongest flares of the year so far, and they signal a significant increase in solar activity. NOAA forecasters estimate a 40% chance of more X-flares during the next 24 hours.”
(Find out more about the classification of solar flares here.)
The sunspot region just became fully visible to Earth during the early hours of May 13 (UT).
Most recent SDO image of AR1748 (NASA/SDO/AIA)
Sunspots are regions where the Sun’s internal magnetic fields rise up through its surface layers, preventing convection from taking place and creating cooler, optically darker areas. They often occur in pairs or clusters, with individual spots corresponding to the opposite polar ends of magnetic lines.
Sunspots may appear dark because they are relatively cooler than the surrounding area on the Sun’s photosphere, but in ultraviolet and x-ray wavelengths they are brilliantly white-hot. And although sunspots look small compared to the Sun, they are often many times larger than Earth.
According to SDO project scientists Dean Pesnell on the SDO is Go! blog, AR1748 is not only rapidly unleashing flares but also changing shape.
“The movies show that the sunspot is changing, the two small groups on the right merging and the elongated spot on the lower left expanding out to join them,” Pesnell wrote earlier today.
Of course, as a solar scientist Pesnell is likely much more excited about the chance to observe further high-intensity activity than he is concerned about any dramatically negative impacts of a solar storm here on Earth, which, although possible, are still statistically unlikely.
“Great times ahead for this active region!” he added enthusiastically.
For updated information on AR1748’s activity visit SpaceWeather.com and NASA’s SDO site, and also check out TheSunToday.org run by solar physicist C. Alex Young, Ph.D.
Images courtesy of NASA/SDO and the AIA, EVE, and HMI science teams.
A long, magnetic filament burst out from the Sun after a C-cladd flare on(Aug. 31, 2012 (NASA/SDO/AIA)
We live on a planet dominated by weather. But not just the kind that comes in the form of wind, rain, and snow — we are also under the influence of space weather, generated by the incredible power of our home star a “mere” 93 million miles away. As we orbit the Sun our planet is, in effect, inside its outer atmosphere, and as such is subject to the constantly-flowing wind of charged particles and occasional outbursts of radiation and material that it releases. Although it may sound like something from science fiction, space weather is very real… and the more we rely on sensitive electronics and satellites in orbit, the more we’ll need to have accurate weather reports.
Fortunately, the reality of space weather has not gone unnoticed by the U.S. Federal Government.
An X1.6 flare eruption on Jan. 27, 2012 (NASA/SDO/AIA)
Today the White House Office of Science and Technology Policy released a new report, Space Weather Observing Systems: Current Capabilities and Requirements for the Next Decade, which is an assessment of the United States government’s capacity to monitor and forecast potentially harmful space weather and how to possibly mitigate the damage from any exceptionally powerful solar storms in the future.
The report was made by a Joint Action Group (JAG) formed by the National Space Weather Program Council (NSWPC).
The impacts of space weather can have serious economic consequences. For example, geomagnetic storms during the 1990’s knocked out several telecommunications satellites, which had to be replaced at a cost of about $200 million each. If another “once in a century” severe geomagnetic storm occurs (such as the 1859 “super storm”), the cost on the satellite industry alone could be approximately $50 – $100 billion. The potential consequences on the Nation’s power grid are even higher, with potential costs of $1 – 2 trillion that could take up to a decade to completely repair.
– Report on Space Weather Observing Systems: Current Capabilities and Requirements for the Next Decade (April 2013)
“In other words,” according to the report, “the Nation is at risk of losing critical capabilities that have significant economic and security impacts should these key space weather observing systems fail to be maintained and replaced.”
The National Space Weather Program is a Federal interagency initiative with the mission of advancing the improvement of space weather services and supporting research in order to prepare the country for the technological, economic, security, and health impacts that may arise from extreme space weather events.
the Solar Heliospheric Observatory (SOHO) captured this series of four images of a coronal mass ejection (CME) escaping the sun on the morning of April 25, 2013. The images show the CME from 5:24 a.m. to 6:48 a.m. EDT. This was the second of two CMEs in the space of 12 hours. Both are headed away from Earth toward Mercury. Credit: ESA&NASA/SOHO.
Over the past 24 hours, the Sun has erupted with two coronal mass ejections (CMEs), sending billions of tons of solar particles into space. While these CMEs are not directed at Earth, they are heading towards Mercury and may affect the Messenger spacecraft, as well as the Sun-watching STEREO-A satellites. One CME may send a glancing blow of particles to Mars, possibly affecting spacecraft at the Red Planet.
This solar radiation can affect electronic systems on spacecraft, and the various missions have been put on alert. When warranted, NASA operators can put spacecraft into safe mode to protect the instruments from the solar material.
The first CME began at 01:30 UTC on April 25 (9:30 p.m. EDT on April 24), and the second erupted at 09:24 UTC (5:24 a.m. EDT) on April 25. Both left the sun traveling at about 800 kilometers (500 miles per second).
See this animation from the STEREO-B spacecraft:
Animations of CMEs on April 25, 2013 from the STEREO-B spacecraft. Credit: NASA/Goddard Space Flight Center.
The size of Earth compared to sunspot AR1692 on March 15, 2013. Screenshot from the video by Göran Strand.
This video taken by Göran Strand from Östersund, Sweden shows what happened on March 17, 2013 when a Coronal Mass Ejection hit Earth’s magnetic field. Two days earlier, sunspot AR1692 had produced a M1-class solar flare that resulted in the CME that hit Earth.
This time lapse from an all-sky camera captures the magnificent sky show between 19:20 and 23:35 UT on the 17th.
Strand said via email that this time lapse consists of 2464 raw images for a total data amount of 30Gb from the 17th. The stunning photo of the Sun is a hydrogen alpha mosaic he made from 10 images that was captured on March 16.
Curiosity Rover snapped this self portrait mosaic with the MAHLI camera while sitting on flat sedimentary rocks at the “John Klein” outcrop where the robot conducted historic first sample drilling inside the Yellowknife Bay basin, on Feb. 8 (Sol 182) at lower left in front of rover. The photo mosaic was stitched from raw images snapped on Sol 177, or Feb 3, 2013, by the robotic arm camera - accounting for foreground camera distortion. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer (kenkremer.com)
Due to a fast approaching solar storm, NASA has temporarily shut down surface operations of the Curiosity Mars Science Lab (MSL) rover.
NASA took the precautionary measure because ‘a big coronal mass ejection’ was predicted to hit Mars over the next few days starting March 7, or Martian Sol 207 of the mission, researchers said.
The rover team wants to avoid a repeat of the computer memory glitch that afflicted Curiosity last week, and caused the rover to enter a protective ‘safe mode’.
“The rover was commanded to go to sleep,” says science team member Ken Herkenhoff of the US Geological Survey (USGS).
“Space weather can by nasty!”
This is the 2nd shutdown of the 1 ton robot in a week. Curiosity had just been returned to active status over the weekend.
A full resumption of science operations had been anticipated for next week, but is now on hold pending the outcome of effects from the solar storm explosions.
“We are making good progress in the recovery,” said Mars Science Laboratory Project Manager Richard Cook, of NASA’s Jet Propulsion Laboratory, prior to the new solar flare.
“Storm’s a-comin’! There’s a solar storm heading for Mars. I’m going back to sleep to weather it out,” tweeted Curiosity.
Solar flares cause intense bursts of radiation that can damage spacecraft and also harm space faring astronauts, and require the installation of radiation shielding and hardening on space based assets.
Since Mars lacks a magnetic field, the surface is virtually unprotected from constant bombardment by radiation.
NASA’s other spacecraft exploring Mars were unaffected by the solar eruptions – including the long lived Opportunity rover and the orbiters; Mars Odyssey & Mars Reconnaissance Orbiter.
Curiosity’s First Sample Drilling hole is shown at the center of this image in a rock called “John Klein” on Feb. 8, 2013, or Sol 182 operations. The image was obtained by Curiosity’s Mars Hand Lens Imager (MAHLI). The sample-collection hole is 0.63 inch (1.6 centimeters) in diameter and 2.5 inches (6.4 centimeters) deep. The “mini drill” test hole near it is the same diameter, with a depth of 0.8 inch (2 centimeters). Credit: NASA/JPL-Caltech/MSSS Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Eventually, the six-wheeled mega rover will set off on a nearly year long trek to her main destination – the sedimentary layers of the lower reaches of the 3 mile (5 km) high mountain named Mount Sharp – some 6 miles (10 km) away.
So far Curiosity has snapped over 48,000 images and traveled nearly 0.5 miles.
Curiosity’s goal is to assess whether the Gale Crater area on Mars ever offered a habitable zone conducive for Martian microbial life, past or present.
The enormous eruption of a solar prominence and resulting coronal mass ejection (CME) back on August 31 that was captured in amazing HD by NASA’s Solar Dynamics Observatory was also spotted by the Sun-flanking STEREO-B spacecraft, which observed the gigantic gout of solar material soaring away from the Sun.
This video shows the eruption as it passes across the fields of view of several of STEREO-B’s cameras over the course of 48 hours.
According to NASA’s Goddard Space Flight Center, “while CMEs are routinely seen in the Heliographic Imager (HI) telescopes, it’s very rare for prominences to stay visible for so long. The HI1 field of view ranges from 4 to 24 degrees away from the Sun. To get a sense of scale, we know the Sun is roughly 860,000 miles wide — and look how far the prominence holds together. And this CME is so bright it initially saturates the COR1 telescope.”
The bright spot in the red (COR2) field of view is the planet Venus.
Coronal mass ejections are huge bubbles of gas bounded by magnetic field lines that are ejected from the Sun over the course of several minutes — sometimes even hours. If they are directed toward Earth, the cloud of charged solar particles can interact with our magnetosphere and cause anything from increased auroral activity to radio interference to failure of sensitive electromagnetic equipment.
Particularly long filaments like the one that caused the August 31 CME have been known to collapse with explosive results when they hit the stellar surface.
The CME did not travel directly toward Earth but did connect with Earth’s magnetosphere with a glancing blow, causing bright aurorae to appear around the upper latitudes on the night of September 3.
“We managed to snap a few photos before Heaven realised its mistake and closed its doors.”
– Dr. Alexander Kumar
This stunning photo of the Aurora Australis, set against a backdrop of the Milky Way, was captured from one of the most remote research locations on the planet: the French-Italian Concordia Base, located located at 3,200 meters (nearly 10,500 feet) altitude on the Antarctic plateau, 1,670 km (1,037 miles) from the geographic south pole.
The photo was taken on July 18 by resident doctor and scientist Dr. Alexander Kumar and his colleague Erick Bondoux.
Sparked by a coronal mass ejection emitted from active region 11520 on July 12, Earth’s aurorae leapt into high gear both in the northern and southern hemispheres three days later during the resulting geomagnetic storm — giving some wonderful views to skywatchers in locations like Alaska, Scotland, New Zealand… and even the South Pole.
“A raw display of one of nature’s most incredible sights dazzled our crew,” Dr. Kumar wrote on his blog, Chronicles from Concordia. “The wind died down and life became still. To me, it was if Heaven had opened its windows and a teardrop had fallen from high above our station, breaking the dark lonely polar night.
“We managed to snap a few photos before Heaven realised its mistake and closed its doors.”
With winter temperatures as low as -70ºC (-100ºF), no sunlight and no transportation in or out from May to August, Concordia Base is incredibly isolated — so much so that it’s used for research for missions to Mars, where future explorers will face many of the same challenges and extreme conditions that are found at the Base.
But even though they may be isolated, Dr. Kumar and his colleagues are in an excellent location to witness amazing views of the sky, the likes of which are hard to find anywhere else on Earth. Many thanks to them for braving the bitter cold and otherworldly environment to share images like this with us!
As you read this, a huge cloud of charged solar particles is speeding toward our planet, a coronal mass ejection resulting from the X1.4-class flare that erupted from sunspot 1520 on July 12. The CME is expected to collide with Earth’s magnetic field on Saturday, potentially affecting satellite operations and tripping alarms on power grids, as well as boosting auroral activity. It’s on its way, and all we can do is wait. (Thank goodness for magnetospheres!)
Actually, the effects from the incoming CME aren’t expected to be anything particularly dramatic. NOAA is predicting a geomagnetic storm level raging from G2 to G4, which although ranges from “moderate” to “severe” a G2 (Kp = 6) is most likely, according to Dr. C. Alex Young from NASA’s Goddard Space Flight Center.
[Read: What Is a CME?]
“A G2 level storm can cause some power fluctuations that may set off some voltage alarms for power companies,” Dr. Young told Universe Today. “Damage to transformers is possible for longer events, but unlikely. Satellite companies may have to make some orbit corrections for their satellites, and at higher latitudes where there are aurora they can be some disruption of high frequency radio broadcasts.
“All in all the effects should be minor,” he concluded.
And this may not be the last we hear from 1520, either.
“Its complexity has decreased but it is still large and has a ‘delta’ configuration,” added Dr. Young, “when there is opposite polarity magnetic field of the umbra within the penumbra of the sunspot. This is an unstable configuration that is indicative of larger releases of energy, lots of flares — in particular M and X flares.”
Below is a computer model of the CME from Goddard Space Weather Center. Impact with Earth is expected on 7/14 at 10:20 UT (+-7 hrs), 6:20 am EDT.
Auroras may be visible at lower latitudes this weekend, so check the NOAA’s updated auroral oval map to see if visibility extends into your area over the next several nights. Hopefully aurora photographers around the world will be able to get some great photos of a summer sky show!
You can keep up with the latest news on solar activity on Dr. Young’s blog, The Sun Today. And of course, stay tuned to Universe Today for more updates on any noteworthy space weather!
The video below uses SDO AIA footage in 131(teal), 171(gold) and 335 (blue) angstrom wavelengths, and shows the X1.4 class flare erupted from the center of the sun on July 12, 2012 at 12:52 PM EDT. Each wavelength shows different temperature plasma in the sun’s atmosphere. 171 shows 600,000 Kelvin plasma, 335 shows 2.5 million Kelvin plasma, and 131 shows 10 million Kelvin plasma. The final shot is a composite of 171 and 335 angstrom footage.
Top image: illustration of a CME about to impact Earth’s magnetosphere (NASA). Model animation: NASA/GSFC. Video courtesy NASA/SDO and the AIA science team.
UPDATE: The CME took a bit longer to arrive than expected, but impact with Earth’s magnetic field was detected at around 1800 UT (11 a.m. PDT/2 p.m. EDT), activating a geomagnetic storm. According to SpaceWeather.com:At the moment, conditions appear favorable for auroras over high-latitude places such as Canada, Scandinavia, Antarctica and Siberia. It is too early to say whether the storm will intensify and bring auroras to middle latitudes as well.
Remember that cool animation I posted earlier of AR1520 and how I said there’s no guarantee it wouldn’t unleash an X-class flare? Well at 16:48 UT today, it did. Just goes to show there’s no guarantees in space!
The X1.4-class flare will most likely affect Earth’s magnetic field as 1520 is directly facing us. Stay tuned for more!
Video & image: NASA/SDO and the AIA science team.
UPDATE: The CME associated with this flare is expected to impact Earth’s magnetosphere on Saturday between 3 and 5 p.m. EDT with “moderate to severe” activity possible. See an animated tracker here. (H/T to Francis Reddy at GSFC.) Also in the lineup for impact are MESSENGER and MSL.