Elon Musk Announces Daring SpaceX Dragon Flight Beyond Moon with 2 Private Astronauts in 2018

SpaceX CEO Elon Musk announced plans on Feb. 27, 2017 to launch a commercial crew SpaceX Dragon to beyond the Moon and back with two private astronauts in 2018 using a SpaceX Falcon Heavy launching from the Kennedy Space Center. Credit: SpaceX

KENNEDY SPACE CENTER, FL – Elon Musk, billionaire founder and CEO of SpaceX, announced today (27 Feb) a daring plan to launch a commercial manned journey “to beyond the Moon and back” in 2018 flying aboard an advanced crewed Dragon spacecraft paid for by two private astronauts – at a media telecon.

Note: Check back again for updated details on this breaking news story.

“This is an exciting thing! We have been approached to do a crewed mission to beyond the Moon by some private individuals,” Musk announced at the hastily arranged media telecon just concluded this afternoon which Universe Today was invited to participate in.

The private two person crew would fly aboard a human rated Dragon on a long looping trajectory around the moon and far beyond on an ambitious mission lasting roughly eight days and that could blastoff by late 2018 – if all goes well with rocket and spacecraft currently under development, but not yet flown.

“This would do a long leap around the moon,” Musk said. “We’re working out the exact parameters, but this would be approximately a week long mission – and it would skim the surface of the moon, go quite a bit farther out into deep space, and then loop back to Earth. I’m guessing probably distance wise, maybe 300,000 or 400,000 miles.”

The private duo would fly on a ‘free return’ trajectory around the Moon – but not land on the Moon like NASA did in the 1960s and 1970s.

But they would venture further out into deep space than any humans have ever been before.

No human has traveled beyond low Earth orbit in more than four decades since Apollo 17 – NASA’s final lunar landing mission in December 1972, and commanded by recently deceased astronaut Gene Cernan.

“Like the Apollo astronauts before them, these individuals will travel into space carrying the hopes and dreams of all humankind, driven by the universal human spirit of exploration,” says SpaceX.

Musk said the private crew of two would launch on a Dragon 2 crew spacecraft atop a SpaceX Falcon Heavy booster from historic pad 39A at the Kennedy Space Center in Florida – the same pad that just reopened for business last week with the successful launch of a cargo Dragon to the International Space Station (ISS) for NASA on the CRS-10 mission.

“They are two paying customers,” Musk elaborated. “They’re very serious about it.”

“But nobody from Hollywood.”

“They will fly using a Dragon 2 and Falcon Heavy next year in 2018.”

“The lunar orbit mission would launch about 6 months after the [first] NASA crew to the space station on Falcon 9/Dragon 2,” Musk told Universe Today.

Musk noted they had put down “a significant deposit” and will undergo extensive flight training.

He declined to state the cost – but just mentioned it would be more than the cost of a Dragon seat for a flight to the space station, which is about $58 million.

The Falcon Heavy, once operational, will be the most powerful rocket in the world. Credit: SpaceX

SpaceX is currently developing the commercial crew Dragon spacecraft for missions to transport astronauts to low Earth orbit (LEO) and the International Space Station (ISS) under a NASA funded a $2.6 billion public/private contract. Boeing was also awarded a $4.2 Billion commercial crew contract by NASA to build the crewed CST-100 Starliner for ISS missions.

The company is developing the triple barreled Falcon Heavy with its own funds – which is derived from the single barreled Falcon 9 rocket funded by NASA.

But neither the Dragon 2 nor the Falcon Heavy have yet launched to space and their respective maiden missions haven been postponed multiple time for several years – due to a combination of funding and technical issues.

So alot has to go right for this private Moonshot mission to actually lift off by the end of next year.

NASA is developing the new SLS heavy lift booster and Orion capsule for deep space missions to the Moon, Asteroids and Mars.

The inaugural uncrewed SLS/Orion launch is slated for late 2018. But NASA just announced the agency has started a feasibility study to examine launching a crew on the first Orion dubbed Exploration Mission-1 (EM-1) on a revamped mission in 2019 rather than 2021 on EM-2.

Thus the potential exists that SpaceX could beat NASA back to the Moon with humans.

I asked Musk to describe the sequence of launches leading up to the private Moonshot and whether a crewed Dragon 2 would launch initially to the ISS.

Musk replied that SpaceX hopes to launch the first uncrewed Dragon 2 test flight to the ISS by the end of this year on the firm’s Falcon 9 rocket – almost identical to the rocket that just launched on Feb. 19 from pad 39A.

That would be followed by crewed launch to the ISS around mid-2018 and the private Moonshot by the end of 2018.

“The timeline is we expect to launch a human rated Dragon 2 on Falcon 9 by the end of this year, but without people on board just for the test flight to the space station,” Musk told Universe Today.

“Then about 6 months later we would fly with a NASA crew to the space station on Falcon 9/Dragon 2.”

“And then about 6 months after that, assuming the schedule holds by end of next year, is when we would do the lunar orbit mission.”

I asked Musk about whether any heat shield modifications to Dragon 2 were required?

“The heat shield is quite massively over designed,” Musk told me during the telecom.

“It’s actually designed for multiple Earth orbit reentry missions – so that we can actually do up to 10 reentry missions with the same heat shield.”

“That means it can actually do at least 1 lunar orbit reentry velocity missions, and conceivably maybe 2.”

“So we do not expect any redesign of the heat shield.”

The reentry velocity and heat generated from a lunar mission is far higher than from a low Earth orbit mission to the space station.

Nevertheless the flight is not without risk.

The Dragon 2 craft will need some upgrades. For example “a deep space communications system” with have to be installed for longer trips, said Musk.

Dragon currently is only equipped for shorter Earth orbiting missions.

The flight must also be approved by the FAA before its allowed to blastoff – as is the case with all commercial launches like the Feb. 19 Falcon 9/Cargo Dragon mission for NASA.

SpaceX founder and CEO Elon Musk. Credit: Ken Kremer/kenkremer.com

Musk declined to identify the two individuals or their genders but did say they know one another.

They must pass health and training tests.

“We expect to conduct health and fitness tests, as well as begin initial training later this year,’ noted SpaceX.

The flight itself would be very autonomous. The private passengers will train for emergencies but would not be responsible for piloting Dragon.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Musk said he would give top priority to NASA astronauts for the Moonshot mission if the agency wanted to procure the seats ahead of the private passengers.

He noted that SpaceX would have the capability to launch one or 2 private moonshots per year.

“I think this should be a really exciting mission that gets the world really excited about sending people into deep space again. I think it should be super inspirational,” Musk said.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket launches from pad 39A at the Kennedy Space Center on Feb 19, 2017 for NASA on the Dragon CRS-10 delivery mission to the International Space Station (ISS). Credit: Julian Leek
SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com
An artist's illustration of the Falcon Heavy rocket. Image: SpaceX
An artist’s illustration of the Falcon Heavy rocket. Image: SpaceX

Orbital ATK Proposes Man-Tended Lunar-Orbit Outpost by 2020 for Link Up with NASA’s Orion

Artist rendering of Orbital ATK concept for an initial lunar habitat outpost, as it would appear with NASA’s Orion spacecraft in 2021. Credit: Orbital ATK
Artist rendering of Orbital ATK concept for an initial lunar habitat outpost, as it would appear with NASA’s Orion spacecraft in 2021. Credit: Orbital ATK

Orbital ATK has unveiled a practical new proposal to build a near term man-tended outpost in lunar orbit that could launch by 2020 and be operational in time for a lunar link-up with NASA’s Orion crew module during its maiden mission, when American astronauts finally return to the Moon’s vicinity in 2021 – thus advancing America’s next giant leap in human exploration of deep space.

The intrepid offer by Orbital could be carried out rather quickly because it utilizes an evolved version of the company’s already proven commercial Cygnus space station resupply freighter as “the building block … in cislunar space,” said Frank DeMauro, Orbital ATK Vice President for Human Spaceflight Systems, in an exclusive interview with Universe Today. See an artist concept in the lead image.

“Our Cygnus spacecraft is the building block to become a vehicle for exploration beyond low Earth orbit,” Orbital ATK’s Frank DeMauro told Universe Today.

“We are all about supporting NASA’s Mission to Mars. We feel that getting experience in cislunar space is critical to the buildup of the capabilities to go to Mars.”

NASA’s agency wide goal is to send astronauts on a ‘Journey to Mars’ in the 2030s – and expeditions to cislunar space in the 2020s serve as the vital ‘proving ground’ to fully develop, test out and validate the robustness of crucial technologies upon which the astronauts lives will depend on later Red Planet missions lasting some 2 to 3 years.

Orbital ATK’s lunar-orbit outpost proposal was announced at an official hearing of the US House of Representatives Subcommittee on Space on Wednesday, May 18, by former NASA Astronaut and Orbital ATK President of the Space Systems Group, Frank Culbertson.

“A lunar-orbit habitat will extend America’s leadership in space to the cislunar domain,” said Orbital ATK President of the Space Systems Group, Frank Culbertson.

“A robust program to build, launch and operate this initial outpost would be built on NASA’s and our international partners’ experience gained in long-duration human space flight on the International Space Station and would make use of the agency’s new Space Launch System (SLS) and Orion deep-space transportation system.”

The idea is to assemble an initial crew-tended habitat with pressurized work and living volume for the astronauts based on a Cygnus derived vehicle, and have it pre-positioned and functioning in lunar-orbit by 2020.

As envisioned by Orbital ATK, the habitat would be visited during NASA’s first manned mission of SLS and Orion to the Moon known as Exploration Mission-2 (EM-2).

The three week long EM-2 lunar test flight could launch as early as August 2021 – if sufficient funding is available.

The goals of EM-2 and following missions could be significantly broadened via docking with a lunar outpost. And Orion mission durations could be extended to 60 days.

NASA hopes to achieve a launch cadence for Orion/SLS of perhaps once per year.

Therefore autonomy and crew tended capability has to be built in to the lunar habitat right from the start – since crew visits would account for only a fraction of its time but enable vastly expanded science and exploration capabilities.

The initial lunar habitat envisioned by Orbital ATK would be comprised of two upgraded Cygnus pressurized vehicles – provisionally dubbed as Exploration Augmentation Modules (EAM). They would be attached to a multi-port docking module very similar in concept and design to the docking Nodes already flying in orbit as integral components of the ISS.

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus launched atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

The lunar Cygnus vehicles would be upgraded from the enhanced cargo ships currently being manufactured and launched to the ISS.

“There are additional capabilities that we can put into the Cygnus module. We can make them longer and bigger so they can carry more logistics and carry more science,” DeMauro elaborated.

A variety of supplementary subsystems would also need to be enhanced.

“We looked at what systems we would need to modify to make it a long term habitation module. Since we would not be docked to the ISS, we would need our own Environmental Control and Life Support Systems (ECLSS) out at lunar orbit to support the crew.”

“The service module would also need to be improved due to the high radiation environment and the longer time.”

“We also need to look at the thermal protection subsystem, radiation protection subsystem and power subsystems to support the vehicle for many years as opposed to the short time spent at the ISS. More power is also needed to support more science. We also need a propulsion system to get to the Moon and maintain the vehicle.”

“All that work is getting looked at now – to determine what we need to modify and upgrade and how we would do all that work,” DaMauro told me.

The habitat components would be launched to the Moon on a commercial launch vehicle.

High on the list of candidate launchers would be the United Launch Alliance Atlas V rocket which recently already successfully delivered two Cygnus cargo ships to the ISS in Dec. 2015 and March 2016.

Other potential boosters include the ULA Delta IV and even ESA’s Ariane V as a way to potentially include international participation.

Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22.  Credit: Ken Kremer/kenkremer.com
Inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus launched atop a United Launch Alliance Atlas V rocket on March 22. Credit: Ken Kremer/kenkremer.com

The habitat components could be manufactured and launched about three years after getting a ‘Go Ahead’ contract from NASA.

Orbital ATK already has an established production line flowing to manufacture a steady stream of Cygnus cargo freighters to fulfill their NASA commercial resupply contract with NASA for the ISS – accumulating know how and cost reduction efficiencies.

“Since many aspects of operations in deep space are as yet untested, confidence must be developed through repeated flights to, and relatively long-duration missions in, cislunar space,” says Culbertson.

“Orbital ATK continues to operate our Cygnus cargo logistics vehicle as a flagship product, so we are ready to quickly and affordably implement an initial Cygnus-derived habitat in cislunar space within three years of a go-ahead.”

Over time, the outpost could be expanded with additional habitat and research modules delivered by Orion/SLS, commercial or international rockets. Perhaps even Bigelow expandable commercial modules could be added later.

Cygnus is suitable for wide ranging science experiments and gear. It could also launch cubesats – like the current Cygnus berthed at the ISS is equipped with a cubesat deployer.

Potential lunar landers developed by international partners could dock at the cislunar habitats open docking ports in between surface science forays.

“We are doing science now on Cygnus and we would expect to carry along science experiments on the new Cygnus vehicle. The vehicle is very attractive to science experiments,” DeMauro explained.

“There really is no limit to what the outpost could become.”

“What we put out is very exciting,” DeMauro noted.

“As a company we are looking forward to working in this arena. Our suggested plans are in line with where NASA wants to go. And we think we are the right company to play a big part in that!”

By incorporating commercial companies and leveraging the considerable technology development lessons learned from Cygnus, NASA should realize significant cost savings in implementing its human exploration strategy. Although Orbital ATK is not divulging a cost estimate for the lunar habitat at this time, the cost savings from a commercial partner should be considerable. And the 3 year time frame to launch is very attractive.

Orion is designed to send astronauts deeper into space than ever before, including missions to the Moon, asteroids and the Red Planet. Cygnus derived modules and/or other augmenting hardware components will be required to carry out any round trip human missions to the Martian surface.

NASA is now building the next Orion capsule at the Kennedy Space Center. It will launch unpiloted atop the first SLS rocket in late 2018 on the EM-1 mission.

Lockheed Martin engineers and technicians prepare the Orion pressure vessel for a series of tests inside the proof pressure cell in the Neil Armstrong Operations and Checkout Building at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Kim Shiflett
Lockheed Martin engineers and technicians prepare the Orion pressure vessel for a series of tests inside the proof pressure cell in the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Kim Shiflett

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket.  Credit: Ken Kremer/kenkremer.com
Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

NASA Selects Aerojet Rocketdyne to Develop Solar Electric Propulsion for Deep Space Missions

This prototype 13-kilowatt Hall thruster was tested at NASA's Glenn Research Center in Cleveland and  will be used by industry to develop high-power solar electric propulsion into a flight-qualified system.  Credits: NASA
This prototype 13-kilowatt Hall thruster was tested at NASA’s Glenn Research Center in Cleveland and will be used by industry to develop high-power solar electric propulsion into a flight-qualified system. Credits: NASA

NASA has selected Aerojet Rocketdyne to design and develop an advanced solar electric propulsion (SEP) system that will serve as a critical enabling technology for sending humans and robots on deep space exploration missions to cislunar space, asteroids and the Red Planet.

Under the 3 year, $67 million contract award, Aerojet Rocketdyne will develop the engineering development unit for an Advanced Electric Propulsion System (AEPS) with the potential for follow on flight units.

NASA hopes that the work will result in a 10 fold increase in “spaceflight transportation fuel efficiency compared to current chemical propulsion technology and more than double thrust capability compared to current electric propulsion systems.”

The SEP effort is based in part on NASA’s exploratory work on Hall ion thrusters which trap electrons in a magnetic field and uses them to ionize and accelerate the onboard xenon gas propellant to produce thrust much more efficiently than chemical thrusters.

The solar electric propulsion (SEP) system technology will afford benefits both to America’s commercial space and scientific space exploration capabilities.

For NASA, the SEP technology can be applied for expeditions to deep space such as NASA’s planned Asteroid Robotic Redirect Mission (ARRM) to snatch a boulder from the surface of an asteroid and return it to cislunar space during the 2020s, as well as to carry out the agency’s ambitious plans to send humans on a ‘Journey to Mars’ during the 2030s.

“High power SEP is a perfect example of NASA developing cross cutting technologies to enable both human and robotic deep space missions. Basically it enables high efficiency and better gas mileage,” said Steve Jurczyk, associate administrator of NASA’s Space Technology Mission Directorate (STMD) in Washington, at a media briefing.

“The advantage here is the higher power and the higher thrust.”

“Our plan right now is to flight test the higher power solar electric propulsion that Aerojet Rocketdyne will develop for us on the Asteroid Redirect Robotic Mission (ARRM), which is going to go out to an asteroid with a robotic system, grab a boulder off of an asteroid, and bring it back to a lunar orbit.”

ARRM would launch around 2020 or 2021. Astronauts would blast off several years later in NASA’s Orion crew capsule in 2025 after the robotic probes travels back to lunar orbit.

For industry, electric propulsion is used increasingly to maneuver thrusters in Earth orbiting commercial satellites for station keeping in place of fuel.

“Through this contract, NASA will be developing advanced electric propulsion elements for initial spaceflight applications, which will pave the way for an advanced solar electric propulsion demonstration mission by the end of the decade,” says Jurczyk.

“Development of this technology will advance our future in-space transportation capability for a variety of NASA deep space human and robotic exploration missions, as well as private commercial space missions.”

This 13-kilowatt Hall thruster is being evaluated at NASA’s Glenn Research Center in Cleveland for advanced solar electric propulsion.  Hall thrusters trap electrons in a magnetic field and use them to ionize the onboard propellant. Credits: NASA
This 13-kilowatt Hall thruster is being evaluated at NASA’s Glenn Research Center in Cleveland for advanced solar electric propulsion. Hall thrusters trap electrons in a magnetic field and use them to ionize the onboard propellant. Credits: NASA

“This is also a critical capability for enabling human missions to Mars, with respect to delivering cargo to the surface to Mars that will allow people to live and work there on the surface. Also for combined chemical and SEP systems on a spacecraft to propel humans to Mars,” elaborated Jurczyk at the briefing.

“Another application is round trip robotic science missions to Mars to bring back samples – such as a Mars Sample Return (MSR) mission.”

The starting point is NASA’s development and technology readiness testing of a prototype 13-kilowatt Hall thruster and power processing unit at NASA’s Glenn Research Center in Cleveland.

Under the contract award Aerojet Rocketdyne aims to carry out the industrial development of “high-power solar electric propulsion into a flight-qualified system.”

They will develop, build, test and deliver “an integrated electric propulsion system consisting of a thruster, power processing unit (PPU), low-pressure xenon flow controller, and electrical harness,” as an engineering development unit.

This engineering development unit serves as the basis for producing commercial flight units.

If successful, NASA has an option to purchase up to four integrated flight units for actual space missions. Engineers from NASA Glenn and the Jet Propulsion Laboratory (JPL) will provide technical support.

“We could string together four of these engine units to get approximately 50 kilowatts of electrical propulsion capability and with that we can do significant orbital transfer operations. That then becomes the next step in deep space exploration operations that we are trying to do,” said Bryan Smith, director of the Space Flight Systems Directorate at NASA’s Glenn Research Center in Cleveland, at the media briefing.

“We hope to buy four of these units for the ARRM mission.”

What were some of NASA’s research and development (R&D) activities and further plans for Aerojet Rocketdyne?

“NASA is driving out the technology itself for feasibility. So we produced a developmental device to operate at these levels,” Smith told Universe Today during the briefing.

“Other key characteristics we were looking for is the ability to do magnetic shielding. The purpose was to allow for a long life thruster operation. We investigated attributes like thermal problems and balancing the erosion mechanisms in developmental units. So we were looking for things to get longer life and feasibility in developmental units.”

“Once we were comfortable with the feasibility in developmental units, we are now transferring the information, technology and knowhow into what is a production article, in this contract.”

Robotic sampling arm and capture mechanism to collect a multi-ton boulder from an asteroid are under development at NASA Goddard and other agency centers for NASA’s unmanned Asteroid Redirect Vehicle and eventual docking in lunar orbit with Orion crew vehicle by the mid 2020s.   Credit: Ken Kremer/kenkremer.com
Robotic sampling arm and capture mechanism to collect a multi-ton boulder from an asteroid are under development at NASA Goddard and other agency centers for NASA’s unmanned Asteroid Redirect Vehicle and eventual docking in lunar orbit with Orion crew vehicle by the mid 2020s. Credit: Ken Kremer/kenkremer.com

Solar electric ion propulsion is already being used in NASA’s hugely successful Dawn asteroid orbiter mission.

Dawn was launched in 2007. It orbited and surveyed Vesta in 2011 and 2012 and then traveled outward to Ceres.

Dawn arrived at dwarf planet Ceres in March 2015 and is currently conducting breakthrough science at its lowest planned science mapping orbit.

This image was taken by NASA's Dawn spacecraft of dwarf planet Ceres on Feb. 19 from a distance of nearly 29,000 miles (46,000 km). It shows that the brightest spot on Ceres has a dimmer companion, which apparently lies in the same basin. See below for the wide view. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This image was taken by NASA’s Dawn spacecraft of dwarf planet Ceres on Feb. 19 from a distance of nearly 29,000 miles (46,000 km). It shows that the brightest spot on Ceres has a dimmer companion, which apparently lies in the same basin. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

A key part of the Journey to Mars, NASA will be sending cargo missions to the Red Planet to pave the way for human expeditions with the Orion crew module and Space Launch System.

Aerojet Rocketdyne states that “Solar Electric Propulsion (SEP) systems have demonstrated the ability to reduce the mission cost for NASA Human Exploration cargo missions by more than 50 percent through the use of existing flight-proven SEP systems.”

“Using a SEP tug for cargo delivery, combined with NASA’s Space Launch System and the Orion crew module, provides an affordable path for deep space exploration,” said Aerojet Rocketdyne Vice President, Space and Launch Systems, Julie Van Kleeck.

Aerojet Rocketdyne artists concept for solar electric propulsion system for deep space missions. Credit: Aerojet Rocketdyne
Aerojet Rocketdyne artists concept for solar electric propulsion system for deep space missions. Credit: Aerojet Rocketdyne

Another near term application of high power solar electric propulsion could be for NASA’s proposed Mars 2022 telecom orbiter, said Smith at the media briefing.

Other NASA technology work in progress includes development of more efficient, advanced solar array systems to generate the additional power required for the larger electric thrusters.

Orbital ATK was part of the development effort and already used some of its technology development in the ultraflex solar arrays on the recent Cygnus cargo ships delivering supplies to the ISS.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer