Where Are All These Rogue Planets Coming From?

An artist's illustration of a rogue planet, dark and mysterious. Image Credit: NASA

There’s a population of planets that drifts through space untethered to any stars. They’re called rogue planets or free-floating planets (FFPs.) Some FFPs form as loners, never having enjoyed the company of a star. But most are ejected from solar systems somehow, and there are different ways that can happen.

One researcher set out to try to understand the FFP population and how they came to be.

rogue

This is a First. An Exoplanet in a Polar Circumbinary Disc Surrounding Two Stars.

This illustration shows a binary star surrounded by a thick disc of material in a polar orbit. Copyright and credit: University of Warwick/Mark Garlick

We live in an age of exoplanet discovery. One thing we’ve learned is not to be surprised by the kinds of exoplanets we keep discovering. We’ve discovered planets where it might rain glass or even iron, planets that are the rocky core remnants of gas giants stripped of their atmospheres, and drifting rogue planets untethered to any star.

Continue reading “This is a First. An Exoplanet in a Polar Circumbinary Disc Surrounding Two Stars.”

An Exoplanet is Definitely Orbiting Two Stars

Artist's impression of Kepler-16b, the first planet known to definitively orbit two stars - what's called a circumbinary planet. The planet, which can be seen in the foreground, was discovered by NASA's Kepler mission. Credit: NASA/JPL-Caltech/T. Pyle

Remember that iconic scene in Star Wars, where a young Skywalker steps out onto the surface of Tatooine and watches the setting of two suns? As it turns out, this may be what it is like for lifeforms on the exoplanet known as Kepler-16, a rocky planet that orbits in a binary star system. Originally discovered by NASA’s Kepler mission, an international team of astronomers recently confirmed that this planet orbits two stars at once – what is known as a circumbinary planet.

Continue reading “An Exoplanet is Definitely Orbiting Two Stars”

Study Finds Bizarre Exoplanet Orbits for Binary Stars

Exoplanet surface

There’s an iconic scene in the original Star Wars movie where Luke Skywalker looks out over the desert landscape of Tatooine at the amazing spectacle of a double sunset. Now, a new study out of the National Radio Astronomy Observatory (NRAO) suggests that such exotic exoplanet worlds orbiting multiple stars may exist in misaligned orbits, far out of the primary orbital plane.

Continue reading “Study Finds Bizarre Exoplanet Orbits for Binary Stars”

TESS Finds a Planet That Orbits Two Stars

TOI 1338 b is a circumbinary planet orbiting its two stars. It was discovered by TESS. Image Credit: NASA's Goddard Space Flight Center/Chris Smith

Researchers working with data from NASA’s TESS (Transiting Exoplanet Survey Satellite) have a found a planet that orbits two stars. Initially, the system was identified by citizen scientists as a pair of eclipsing binary stars without a planet. But an intern taking a closer look at that data found that it was misidentified.

Continue reading “TESS Finds a Planet That Orbits Two Stars”

Hubble Detects A Planet Around Binary Star System

This artist's illustration shows a planet circling a pair of distant red dwarf stars, representing the the system OGLE-2007-BLG-349 system, about 8,000 lightyears from Earth. Credit: NASA, ESA, and G. Bacon (STScI).

Binary stars are common throughout the galaxy, as it has been estimated about half the stars in our sky consist of two stars orbiting each other. Therefore, it’s also thought that about half of all exoplanet host stars are binaries as well. However, only about 10 of these so called circumbinary planets have been found so far in the 3,000-plus confirmed extrasolar planets that have been discovered.

But chalk up one more circumbinary planet, and this one bodes well for a technique that could help scientists find planets that orbit far away from their stars. Astronomers using the Hubble Space Telescope have confirmed a very interesting “three-body” system where two very close stars have a planet that orbits them both at a rather large distance.

The two red dwarf stars are just 7 million miles apart, or about 14 times the diameter of the Moon’s orbit around Earth. The planet orbits roughly 300 million miles from the stellar duo, about the distance of the asteroid belt from the Sun. The planet completes an orbit around both stars roughly every seven years.

Will China's new space telescope out-perform the Hubble? Image:
The Hubble Space Telescope. Image: NASA

Hubble used the a technique called gravitational microlensing, where the gravity of a foreground star bends and amplifies the light of a background star that momentarily aligns with it. The light magnification can reveal clues to the nature of the foreground star and any associated planets.

The system, called OGLE-2007-BLG-349, was originally detected in 2007 by the Optical Gravitational Lensing Experiment (OGLE), a telescope at the Las Campanas Observatory in Chile that searches for and observes microlensing effects from small distortions of spacetime, caused by stars and exoplanets.

However, the original OGLE observations could not confirm the details of the OGLE-2007-BLG-349 system. OGLE and several other ground-based observations determined there was a star and a planet in this system, but they couldn’t positively identify what the observed third body was.

“The ground-based observations suggested two possible scenarios for the three-body system: a Saturn-mass planet orbiting a close binary star pair or a Saturn-mass and an Earth-mass planet orbiting a single star,” said David Bennett, from NASA’s Goddard Space Flight Center, who is the first author in a new paper about the system, to be published in the Astrophysical Journal.

With Hubble’s sharp eyesight, the research team was able to separate the background source star and the lensing star from their neighbors in the very crowded star field. The Hubble observations revealed that the starlight from the foreground lens system was too faint to be a single star, but it had the brightness expected for two closely orbiting red dwarf stars, which are fainter and less massive than our sun.

“So, the model with two stars and one planet is the only one consistent with the Hubble data,” Bennett said.
“OGLE has detected over 17,000 microlensing events, but this is the first time such an event has been caused by a circumbinary planetary system,” explains Andrzej Udalski from the University of Warsaw, Poland, co-author of the study and leader of the OGLE project.

The team said this first-ever confirmation of an exoplanet system using the gravitational microlensing technique suggests some intriguing possibilities. While data from the Kepler Space Telescope is more likely to reveal planets that orbit close to their stars, microlensing allows planets to be found at distances far from their host stars.

“This discovery, suggests we need to rethink our observing strategy when it comes to stellar binary lensing events,” said Yiannis Tsapras, another member of the team, from the Astronomisches Recheninstitut in Heidelberg, Germany. “This is an exciting new discovery for microlensing”.

The team said that since this observation has shown that microlensing can successfully detect circumbinary planets, Hubble could provide an essential new role in the continued search for exoplanets.

OGLE-2007-BLG-349 is located 8,000 light-years away, towards the center of our galaxy.

(And, you’re welcome… I didn’t mention Tatooine in this article, until now!)

Further reading: Hubblesite, ESA Hubble,

One Planet, Two Stars: A System More Common Than Previously Thought

An artist's conception of a circumbinary planet. Credit: NASA/JPL-Caltech/T. Pyle

There are few environments more hostile than a planet circling two stars. Powerful tidal forces from the stars can easily destroy the rocky building blocks of planets or grind a newly formed planet to dust. But astronomers have spotted a handful of these hostile worlds.

A new study is even suggesting that these extreme systems exist in abundance, with roughly half of all exoplanets orbiting binary stars.

NASA’s crippled Kepler space telescope is arguably the world’s most successful planet hunter, despite the sudden end to its main mission last May. For nearly four years, Kepler continuously monitored 150,000 stars searching for tiny dips in their light when planets crossed in front of them.

As of today, astronomers have confirmed nearly 1,500 exoplanets using Kepler data alone. But Kepler’s database is immense. And according to the exoplanet archive there are over 7,000 “Kepler Objects of Interest,” dubbed KOIs, that might also be exoplanets.

There are a seeming endless number of questions waiting to be answered. But one stands out: how many exoplanets circle two stars? Binary stars have long been known to be commonplace — about half of the stars in the Milky Way are thought to exist in binary systems.

A team of astronomers, led by Elliott Horch from Southern Connecticut State University, has shown that stars with exoplanets are just as likely to have a binary companion. In other words, 40 to 50 percent of the host stars are actually binary stars.

“It’s interesting and exciting that exoplanet systems with stellar companions turn out to be much more common than was believed even just a few years ago,” said Horch in a news release.

The research team made use of the latest technology, speckle imaging, to take a second look at KOI stars and search for any companion stars. In using this technique, astronomers obtain rapid images of a small portion of the sky surrounding the star. They then combine the images using a complex set of algorithms, which yields a final picture with a resolution better than the Hubble Space Telescope.

Speckle imaging allows astronomers to detect companion stars that are up to 125 times fainter than the target, but only a small distance away (36,000 times smaller than the full Moon). For the majority of Kepler stars, this equates to finding a companion within 100 times the distance from the Sun to the Earth.

The team was surprised to find that roughly half of their targets had companion stars.

“An interesting consequence of this finding is that in the half of the exoplanet host stars that are binary we can not, in general, say which star in the system the planet actually orbits,” said coauthor Steve B. Howell from the NASA Ames Research Center.

The new findings, soon to be published in the Astrophysical Journal, further advance our need to understand these exotic systems and the harrowing environments they face.