China is Working on a Rocket as Powerful as the Saturn V, Could Launch by 2030

In the past decade, China’s space program has advanced by leaps and bounds. In recent years, the Chinese National Space Agency (CNSA) has overseen the development of a modern rocket family (the Long March series), the deployment of a space station (Tiangong-1) and the development of the Chinese Lunar Exploration Program (CLEP) –  otherwise known as the Chang’e Program.

Looking to the future, China plans to create new classes of heavy rockets in order to conduct more ambitious missions. These include the Long March 9 rocket (aka. the Changzheng 9), a three-stage, super-heavy rocket that would allow for crewed missions to the Moon. According to a recent story from Aviation Weekly, China hopes to conduct an engine demonstration of this rocket, and could do so as early as later this year.

This demonstration is part of a research effort intended to create engines for the first stage of the Long March 9. According to statements made by the Academy of Aerospace Propulsion Technology (AAPT) – part of the China Aerospace and Technology Corporation (CASC) and the one’s responsible for developing the hardware – these engines would be capable of delivering 3,500 to 4,000 metric tons (3,858 to 4,409 US tons) of thrust.

Launch of the modified Saturn V rocket carrying the Skylab space station. Credit: NASA

AAPT also indicated that work on a second-stage and third-stage engine – which would be capable of generating about 200 metric tons (440,000 lbs) and 25 metric tons (55,000 lbs) thrust, respectively – is also in progress. All told, this is roughly six times the thrust that China’s heaviest rocket (the Long March 5) can generate and would make it comparable to the Saturn V – the Apollo-era rocket that took the NASA astronauts to the Moon.

For starters, the Saturn V‘s engines delivered roughly 3,400 metric tons of thrust, and the rocket was capable of delivering 140 metric tons (310,000 lbs) to Low Earth Orbit (LEO) and about 48 metric tons (107,100 lbs) to a Lunar Transfer Orbit (LTO). By comparison, the Long March 9 will reportedly have the ability to 140 metric tons to LEO and at least 50 metric tons (110,000 lbs) to LTO.

According to Li Hong, the head of the China Academy of Launch Vehicle Technology (the CASC unit responsible for overall development and production of most Chinese space launchers), a massive turbopump has also been built for the main engine. A pump of this size is necessary, since the engine will generate four time the thrust of the largest Chinese rocket engine to date – AAPT’s YF-100, which generates 120 metric tons (265,000 lbs) of thrust.

While the full specifications of the rocket are not yet available, the China News Service has indicated that the rocket will measure 10 meters (33 ft.) in diameter. According to statements made by both Li and Lui, the first-stage engine will burn kerosene and achieve a thrust of 480 metric tons (529 US tons) – comparable to the Saturn V F-1 engine’s 680 metric tons (750 US tons) of thrust – while the second and third stage engines will likely burn hydrogen fuel.

At their current rate of progress, an engine demonstration could be taking place later this year. As AAPT President Liu Zhirang stated in an interview with Science and Technology Daily (part of the state-owned China News Service):

“A complete prototype for the engine in the 500-metric-ton class can be built and assembled this year… Because of the great parameter changes that come with rises in thrust, the current test and verification equipment cannot satisfy requirements [of the Moon rocket propulsion program]. We cannot always do 1:1 scale tests. As a result, only simulations and scaled-down tests can be done for some technology and hardware. This increases the degree of difficulty for the program.”

If successful, the Long March 9 will join the ranks of super heavy-lift launch vehicles, such as the SpaceX Falcon Heavy, the KRK rocket (currently under development in Russia), and the Space Launch System being developed by NASA. These and other rockets are being built for the purpose of bringing astronauts to the Moon, Mars, and even beyond in the coming decades.

Beyond a possible demonstration of the Long March 9′s engine technology, the CNSA has many other ambitious plans for 2018. These include a planned 35 launches involving the Long March series, fourteen of which will be carried out by the Long March-3A and six by the Long March-3C rockets. Most of these missions will involve the deployment of Beidou satellites, but will also include the launch of the Chang’e-4 lunar probe later this year.

Old Glory
Buzz Aldrin salutes the first American flag erected on the Moon, July 21, 1969. Credit: NASA/Neil A. Armstrong

This year is also when China hopes to conduct mission using its newest rocket – the Long March 5 –  in preparation for China’s lunar probe and Mars probe missions. This year is also expected to see a lot of developments in the Long March 7 series, which is likely to become the main carrier when China begins construction of its new space station (Tiangong-2, which is scheduled for completion in 2022).

Between all of these developments, it is clear that the age of renewed space exploration is upon us. Whereas the Space Race was characterized by two superpowers competing for dominance and “getting their first”, the current one is defined by both competition and cooperation between multiple space agencies and lucrative partnerships between the public sector and private industry.

And while the specter of renewed competition by space powers has a tendency to make many people nervous (especially those who are concerned about military applications), it is a testament to how humanity is growing as a space-faring species. By the time 2050 rolls around, we may just see many flags being planted on the Moon and Mars, and not just Old Glory.

Further Reading: Aviation Week, Popular Mechanics, Chinese Academy of Sciences

China Says it Still has Control Over Tiangong-1 and Can Decide Where It’ll Crash

The Tiangong-1 space station has been the subject of a lot of interest lately. Though its mission was meant to end in 2013, the China National Space Agency extended its service until 2016. In September of 2017, after much speculation from the international community, the Agency acknowledged that the station’s orbit was degrading and that it would fall to Earth later in the year.

Based on updates from satellite trackers, it has been indicated that Tianglong-1 will likely reenter our atmosphere in March of 2018, with the possibility of debris making it to the surface. However, according to a statement made by a top engineer at the China Aerospace Science and Technology Corporation (CASTC), reports that the Chinese National Space Agency (CNSA) has lost control of the space station have been wildly exaggerated.

The statement came from Zhu Congpeng, a top engineer at the China Aerospace Science and Technology Corporation (CASTC). As he was quoted as saying to the Science and Technology Daily newspaper – a state-backed Chinese science journal – the CNSA is still in control of the space station, it’s reentry will be controlled, and it will not pose a threat to the environment or any population centers.

Artist’s illustration of China’s 8-ton Tiangong-1 space station, which is expected to fall to Earth in late 2017. Credit: CMSE

Previously, the CNSA claimed that the majority of the station would burn up in orbit, with only small pieces falling to the Earth. But according to Zhu Congpeng’s statement, when the station burns up in the atmosphere, the remaining debris will not jeopardize people, infrastructure or the environment anywhere on the surface. As Zhu Congpeng stated:

“We have been continuously monitoring Tiangong-1 and expect to allow it to fall within the first half of this year. It will burn up on entering the atmosphere and the remaining wreckage will fall into a designated area of the sea, without endangering the surface.”

As with previous missions – like the Mir space station, the Russian Progress spacecraft, and NASA’s Compton Gamma-Ray Observatory – the designated crash site is a deep-sea area in the South Pacific known as the “spacecraft cemetery”. As a further indication that the CNSA is still in control of Tiangong-1, Zhu claimed that the CNSA has been constantly monitoring the space station since the end of its mission.

“The latest bulletin shows that on December 17-24, 2017, Temple One runs on an orbit with an average height of about 286.5 kilometers (height of about 272.6 kilometers near perigee, height of about 300.4 kilometers at apogee and inclination of about 42.85 degrees), attitude stability,” he said. “There is no abnormal morphology.”

The Aerospace Corporations predicted reentry for Tiangong-1. Credit: aerospace.org

He also emphasized that the station’s reentry was delayed until September in order to ensure the the wreckage would fall into the South Pacific. In other words, the position of Tiangong-1 is something the Chinese have been monitoring closely, and they will continue to do so when it reenters the atmosphere this coming March. This latest statement comes on the heels of statements made by both China’s manned space engineering office and the Aerospace Corporation, which appeared to offer a different appraisal.

Back in mid-September, Wu Ping – the deputy director of China’s manned space engineering office – stated at a press conference that there was some chance that debris would land on Earth. While she was insistent that the odds of any debris surviving the passage through Earth’s atmosphere were minimal, it did suggest that the reentry would be uncontrolled.

This echoed the comprehensive report recently issued by the Aerospace Corporation, which stated that the Chinese space agency was unlikely to remain in control of Tiangong-1’s for the entirety of its reentry. Much like Wu, they also emphasized that the majority of the station would burn up on reentry and that it was unlikely that any debris would make it to the surface and cause damage.

As such, its not entirely clear if the reentry will be entirely controlled or not. But even if it should prove to be the latter, there is little reason to worry. As the Aerospace Corporation stated in their report:

“[T]he probability that a specific person (i.e., you) will be struck by Tiangong-1 debris is about one million times smaller than the odds of winning the Powerball jackpot. In the history of spaceflight, no known person has ever been harmed by reentering space debris. Only one person has ever been recorded as being hit by a piece of space debris and, fortunately, she was not injured.”

Banxing-2 snaps Tiangong-2 and Shenzhou-11 using a fisheye camera. Credit: Chinese Academy of Sciences

On top of that, the European Space Agency’s Inter Agency Space Debris Coordination Committee (IADC) will also be monitoring the reentry closely. They’ll also be using the occasion to conduct a test campaign designed to improve the accuracy of reentry predictions. And so far, all their predictions indicate that come March, people on Earth will be safe from falling debris.

So if you happen to live close to the equator, this coming March is sure to be an exciting time for sky-watchers! And if there’s any chance of debris landing where you live, you can sure you’ll hear about it well in advance.

 

Further Reading: Independent, STDaily

Europe & China Discuss Moonbase Partnership

In recent years, multiple space agencies have shared their plans to return astronauts to the Moon, not to mention establishing an outpost there. Beyond NASA’s plan to revitalize lunar exploration, the European Space Agency (ESA), Rocosmos, and the Chinese and Indian federal space agencies have also announced plans for crewed missions to the Moon that could result in permanent settlements.

As with all things in this new age of space exploration, collaboration appears to be the key to making things happen.  This certainly seems to be the case when it comes to the China National Space Administration (CNSA) and the ESA’s respective plans for lunar exploration. As spokespeople from both agencies announced this week, the CNSA and the ESA hope to work together to create a “Moon Village” by the 2020s.

The announcement first came from the Secretary General of the Chinese space agency (Tian Yulong). On earlier today (Wednesday, April 26th) it was confirmed by the head of media relations for the ESA (Pal A. Hvistendahl). As Hvistendahl was quoted as saying by the Associated Press:

“The Chinese have a very ambitious moon program already in place. Space has changed since the space race of the ’60s. We recognize that to explore space for peaceful purposes, we do international cooperation.”

Multi-dome lunar base being constructed, based on the 3D printing concept. Credits: ESA/Foster + Partners

Yulong and Hvistendahl indicated that this base would aid in the development of lunar mining, space tourism, and facilitate missions deeper into space – particularly to Mars. It would also build upon recent accomplishments by both agencies, which have successfully deployed robotic orbiters and landers to the Moon in the past few decades. These include the CNSA’s Chang’e missions, as well as the ESA’s SMART-1 mission.

As part of the Chang’e program, the Chinese landers explored the lunar surface in part to investigate the prospect of mining Helium-3, which could be used to power fusion reactors here on Earth. Similarly, the SMART-1 mission created detailed maps of the northern polar region of the Moon. By charting the geography and illumination of the lunar north pole, the probe helped to identify possible base sites where water ice could be harvested.

While no other details of this proposed village have been released just yet, it is likely that the plan will build on the vision expressed by ESA director Jan Woerner back in December of 2015. While attending the “Moon 2020-2030 – A New Era of Coordinated Human and Robotic Exploration” symposium, Woerner expressed his agency’s desire to create an international lunar base as a successor to the International Space Station.

In addition, its is likely that the construction of this base will rely on additive manufacture (aka. 3-d printing) techniques specially developed for the lunar environment. In 2013, the ESA announced that they had teamed up with renowned architects Foster+Partners to test the feasibility of using lunar soil to print walls that would protect lunar domes from harmful radiation and micrometeorites.

Artist’s impression of a lunar base created with 3-d printing techniques. Credits: ESA/Foster + Partners

This agreement could signal a new era for the CNSA, which has enjoyed little in the way of cooperation with other federal space agencies in the past. Due to the agency’s strong military connections, the U.S. government passed legislation in 2011 that barred the CSNA from participating in the International Space Station. But an agreement between the ESA and China could open the way for a three-party collaboration involving NASA.

The ESA, NASA and Roscosmos also entered into talks back in 2012 about the possibility of creating a lunar base together. Assuming that all four nations can agree on a framework, any future Moon Village could involve astronauts from all the world’s largest space agencies. Such a outpost, where research could be conducted on the long-term effects of exposure to low-g and extra-terrestrial environments, would be invaluable to space exploration.

In the meantime, the CNSA hopes to launch a sample-return mission to the Moon by the end of 2017 – Chang’e 5 – and to send the Chang’e 4 mission (whose launch was delayed in 2015) to the far side of the Moon by 2018. For its part, the ESA hopes to conduct a mission analysis on samples brought back by Chang’e 5, and also wants to send a European astronaut to Tiangong-2 (which just conducted its first automated cargo delivery) at some future date.

As has been said countless times since the end of the Apollo Era – “We’re going back to the Moon. And this time, we intend to stay!”

Further Reading: Bloomberg, ESA

Chinese Fireball Freaks Out Las Vegas

Seeing a fireball erupt in the sky is not an unusual occurrence. Especially during late July, when the Delta Aquirid meteor shower is so near to peaking. At times like this, dozens of fiery objects can be observed streaking across the atmosphere. But on this occasion, the light show that was spotted over Las Vegas earlier this week had a stranger cause.

The fireball appeared on Wednesday July 27th, at around 9:30 p.m. (Pacific Time), and could be seen from California to Utah. News and videos of the fiery apparition were quickly posted on social media, where astronomers began to notice something odd. And as it turned out, it was NOT the result of a meteor shower, but was in fact was the second stage of a rocket hitting the atmosphere, courtesy of the Chinese National Space Agency.

Such was the conclusion of Phil Plait, an astronomer and writer for Slate. After seeing a video shot of the display, he took to Twitter to question the explanation that it was the result of the Delta Aquirids. Based on his observations, he asserted that the event was actually the result of space debris burning up in the atmosphere.

His posts encouraged Jonathan McDowell, an astronomer at the Harvard-Smithsonian Center for Astrophysics, to do some checking. After looking into the matter, McDowell determined that the cause was a spent stage of a Chinese rocket falling back to Earth. As he posted on Twitter:

“Observation reports from Utah indicate the second stage from the first Chang Zheng 7 rocket, launched Jun 25, reentered at 0440 UTC.”

The Chang Zheng 7 is the latest in a line of Chinese rockets. It’s name translates to “Long March”, in honor of Mao’s forces marching into China’s interior during the Second Sino-Japanese War (1937-1945). A liquid-fueled carrier rocket designed to handle medium to heavy payloads, this rocket was developed to replace the Chinese Space Agency’s Long March 2F crew-rated launch vehicle.

This rocket is expected to play a critical role in creation of the Chinese Space Station, and will serve as the launch vehicle for the Tianzhou robotic cargo spacecraft in the meantime. Monday, June 25th was the inaugural launch of the rocket, and after the second stage was spent, it re-entered the Earth’s atmosphere at 04:36 UTC (9:36 p.m. Pacific Time) on Wednesday.

The 2nd stage then began to burn up as it moved across the sky from southwest to northeast, moving at speeds of 20,000 km/h (12,427 mph). It eventually disintegrated after becoming visible all across the south-western US, burning up at an altitude of about 100 km (62.13 mi). At this point, observers reported hearing a large boom, and many were fortunate enough to get the whole thing on video (as you can see from the ones included here).

While discarded space vehicles burn up in the atmosphere all the time, this was one of those rare occasions when the object happened to weight 6 metric tons (6.6 short tons)! We’re just fortunate that space launches are so rigorously planned so as to prevent them from causing accidents and extensive property damage, unlike certain meteorites that show up uninvited (looking at you Chelyabinsk meteor!)

TOTH: Slate

Watch Formation-Flying Chinese ‘Yaogan’ Satellites Slip Silently Through the Stars

The list of amazing things that astrophotographer Thierry Legault captures with his camera keeps growing! This time, it’s a trio of hard-to see, formation-flying Chinese reconnaissance satellites called Yaogan.

“Yaogan triplets are Chinese reconnaissance satellites flying at 1,100 km in groups of 3, separated by about 100km (5°),” Legault explained to Universe Today.

In this video are two different ‘triplets’ of these satellites taken with Legault’s Sony A7s. First you’ll see the Yoagan 16 A/B/C passing through the sky field that includes M31, the Pleiades, the Hyades, the Orion nebula. Second is Yaogan 20 A/B/C passing over M31 just before disappearing in the shadow of the Earth.

“The magnitude of Yaogans is about 5, barely visible to the naked eye,” Legault said via email. “But sometimes they flare, as you can see in the beginning of the movie.”

The fine tracking Legault did of these objects is incredible, along with the detail of the stars and deep-sky objects. ?

Legault used Calsky – his go-to source for observing – to calculate where he would need to be to see these satellites crossing near the famous deep-sky objects. He drove about 100 km west of his home in Paris to capture this unique video.

According to Robert Christy at zarya.info, the Yaogan satellites are imaging satellites “with a government or military purpose. Some seem to carry optical payloads and others carry radar. There are also some launches into orbits very like the US NOSS satellites.”

Christy lists the tasks of these satellites as imaging for remote sensing for military or government photo-reconnaissance including for “natural resources surveys and, possibly, intelligence gathering. Specific tasks include land survey, crop yield assessment, and input to disaster monitoring and prevention plans.”

There have been 24 launches of these satellites since 2006, with one launching as recently as November 20, 2014. Four of the launches were for “triplets” of these satellites.

Find out more about these satellites at zarya.info.

As always, you can see more of Legault’s find astrophotgraphy at his website.
See our review of his newly translated book “Astrophotography” here.