Weekly Space Hangout – Jan. 29, 2016: Largest Solar System, Future Missions, and Remembering Our Lost Astronauts

Host: Fraser Cain (@fcain)

Guests:
Carolyn Collins Petersen (thespacewriter.com / space.about.com / @spacewriter )
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Kimberly Cartier (@AstroKimCartier )
Dave Dickinson (www.astroguyz.com / @astroguyz)
Jolene Creighton (fromquarkstoquasars.com / @futurism)
Paul Sutter (pmsutter.com / @PaulMattSutter)

Continue reading “Weekly Space Hangout – Jan. 29, 2016: Largest Solar System, Future Missions, and Remembering Our Lost Astronauts”

Challenges We’re Overcoming Following the Challenger Accident

It was thirty years ago, January 28, 1986, that space shuttle Challenger exploded 73 seconds into its flight, killing seven astronauts. This is a tough time of year in the history of human spaceflight, as 19 years on January 27, 1967 three astronauts died in a fire in the module of Apollo 1. Then on February 1, 2003, space shuttle Columbia disintegrated as it reentered Earth’s atmosphere, killing all seven crew members.

Remembering these events brings home the fact that even today, spaceflight remains far from routine. But over the years, what else have we learned from these tragedies?

I recently touched base with long-time NASA engineer Jerry Woodfill, whose name you may recall from our two series about Apollo 13 — 13 Things That Saved Apollo 13 and 13 More Things That Saved Apollo 13.

Christa McAuliffe. Credit: Challenger's Lost Lessons
Christa McAuliffe. Credit: Challenger’s Lost Lessons

But Jerry was also featured in an article we did in 2008. A year earlier he came across a file of papers from 1985 that proposed how teacher Christa McAuliffe’s eight lessons would be performed on orbit as part of the Challenger mission. Woodfill worked to find old videos, photographs and other materials that had been tucked away in sadness and grief following the loss of Challenger and put together lesson plans and gave them to the Challenger Center. The lessons are available on the Center’s website.

Jerry and I discussed other “lessons” that may have been learned from the tragedies, and he had some interesting ideas about paradigm shifts that have occurred over the past 30-plus years. Here are a few “old” ideas that have changed or are in the process of changing:

Civilians, especially women should not be launched on risky missions to space

The 2013 astronaut candidate class. Front row, left to right: Jessica Meir, Christina Hammock, Andrew Morgan. Back row (left to right), Anne McClain, Nicole Mann, Tyler (Nick) Hague, Josh Cassada and Victor Glover. Credit: NASA
The 2013 astronaut candidate class. Front row, left to right: Jessica Meir, Christina Hammock, Andrew Morgan. Back row (left to right), Anne McClain, Nicole Mann, Tyler (Nick) Hague, Josh Cassada and Victor Glover. Credit: NASA

We’re certainly beyond the “women can’t do what men can” in our society (for the most part, anyway), and NASA’s last class of astronauts was 50% women (4 out of 8). It did take NASA until 1978 to hire the first female astronauts.

As far as civilians being part of space flight…. that’s the whole point the pioneers of spaceflight did what they did, to try and make flying to space as routine as flying in an airplane.

“While we’re not quite there yet,” said Woodfill, “the prospects for civilian space travel is altogether more plausible. “Now we have a maturing commercial space paradigm that wholly embraces the idea of everybody someday being eligible for a trip to space.”

Woodfill also mentioned that he used to hear that some people thought the idea that a Challenger-like mission should never be attempted again.

“That is refuted by the Challenger’s Lost Lessons project in 2008 and how much these recovered lessons mean to the families of the crew,” he said, “ and to the teachers that are now using these lessons in their classrooms.”
McAuliffe’s backup, Barbara Morgan completed her space shuttle flight in 2007 as a mission specialist, doing special education activities during the mission.

Nothing good can come of such a tragedy.

“An obvious challenge to such a posture was a redesigned, safer, more robust Solid Rocket Booster system,” Woodfill said. “In fact, it led to the work-horse SRBs adapted and upgraded for the Space Launch System (SLS) which will likely take us to Mars.”

The tragedies have provided lessons to be learned. “Go-fever” has been tempered with a more analytical view of each mission and the potential risks it entails. Crew safety at NASA has become top priority. All NASA workers are told to “speak up” if they see something that might compromise any mission.

Human spaceflight is too risky.

Dr. Robert H. Goddard (second from right) and his colleagues hold a liquid-propellant rocket in 1932 at their New Mexico workshop. Credit: NASA Goddard Space Flight Center
Dr. Robert H. Goddard (second from right) and his colleagues hold a liquid-propellant rocket in 1932 at their New Mexico workshop. Credit: NASA Goddard Space Flight Center

This debate will likely continue, but ask anyone associated with spaceflight and they’ll tell you they know the risks and that it’s all worth it for what it means for humanity. You can read Neil de Grasse Tyson’s ideas about this here.

National Geographic is currently running a show they produced called “Challenger Disaster: Lost Tapes,” that shows some old footage shot at NASA following the accident. Shown is then-Vice President George H.W. Bush and astronaut and Senator John Glenn who met with NASA’s space shuttle launch team at Kennedy Space Center in Florida. Bush said he met with the families of the lost astronauts and relayed that they pleaded that the space shuttle program continue “forward full speed.”

Glenn said, in part, “We’ve had tremendous triumph. …. And with this program, we’ve succeeded. Really, if we’re honest about it, beyond our wildest dreams. I would have never thought we’d go this far without losing some people, at something where you’re going at 5 miles a second, with the heat of reentry and the complexity of a system where everything has to go right. Now, we have a tragedy that goes along with our triumphs. I guess that’s the story of mankind.”

As many have said, the future doesn’t belong to the faint of heart, and it is part of human nature to explore and push the boundaries. But there are always lessons to be learned and ideas to be challenged. That’s part of the story of humankind, too.

Find out more about the National Geographic special here.

Rocket Fail Video Shows Human And Technological Risk With Each Launch

What you see above is 32 minutes of something going wrong during each launch. While humanity has been launching things into space since the 1950s, you can see just how hard it is — over and over again. And when humans are riding aboard the rockets, the toll becomes more tragic.

According to the YouTube author of the video above, the vehicles shown include “V2, Vanguard TV3, Explorer S-1, Redstone 1, Titan I, Titan II, Titan IV, Atlas, Atlas-Centaur, N1, Delta, Delta III, Foton, Soyuz, Long March, Zenith, Space Shuttle Challenger, and more.”

Naturally, with each failure the engineers examine the systems and work to fix things for next time. A famous example is the Challenger shuttle explosion, which you can see about halfway through the video. There were multiple causes for the failure (human and technical), but one of them was an O-ring that failed in cold weather before the launch. NASA revised the launch rules and with contractors, made some changes to the booster rocket design, as a 2010 Air and Space Smithsonian article points out:

Freezing temperatures weakened an O-ring seal in a joint between two segments of the right booster. The weakness allowed hot gases to burn through the casing, causing the shuttle to break apart on ascent, which killed the seven-member crew. Two joints were redesigned with interlocking walls that had new bolts, pins, sensors, seals, and a third O-ring.

Still, launching is a risky business. That’s why it’s so important that engineers try to catch problems before they happen, and that as soon as a problem is seen, it’s fixed.

‘Obviously A Major Malfunction’: Today Is Anniversary of Challenger’s Explosion

It was on this day (Jan. 28) in 1986 that stunned viewers across the world saw the Challenger space shuttle explode on television. The broadcast (you can see CNN’s above) was being carried all over the place because the crew included the first teacher in space, Christa McAuliffe. The planned six-day mission, however, lasted just over a minute before catastrophe occurred.

Flying aboard mission 51-L were commander Francis “Dick” Scobee, pilot Michael Smith, mission specialists Judith Resnik, Ellison Onizuka and Ronald McNair, and payload specialists Gregory Jarvis and McAuliffe. The physical cause of the explosion was traced back to a faulty O-ring on one of the shuttle’s external boosters, which weakened in the cold before launch and then failed, leading to the explosion about 72 seconds after launch.

Other factors were cited as well by journalists and the Rogers Commission, such as NASA’s desire to keep to what outsiders said was an unrealistic, quick-moving launch schedule that saw shuttles leave the ground every few weeks to carry commercial and military payloads. NASA and contractor Morton Thiokol made changes to the boosters, and NASA further changed the flight rules and other procedures in response to the disaster.

There are many memorials to the fallen crew, but one of the most cited in education is the 40 Challenger Learning Centers that are located in the United States, Canada, United Kingdom and South Korea. The network was founded by June Scobee Rogers (the widow of commander Scobee) and includes participation from other Challenger family members. Their goal is to “give students the chance to become astronauts and engineers and solve real-world problems as they share the thrill of discovery on missions through the Solar System,” the website states.

Challenger’s anniversary comes in a week that includes other tragic anniversaries, including the Apollo 1 pad fire that claimed three astronauts’ lives (Jan. 27, 1967) and Columbia shuttle breakup that killed seven (Feb. 1, 2003). Other astronauts have died in training accidents; you can see a list at the Astronaut Memorial Foundation. Additionally, four cosmonauts died in spaceflight: Vladimir Komarov (Soyuz 1 on April 24, 1967) and Georgi Dobrovolskiy, Viktor Patsayev, and Vladislav Volkov (Soyuz 11 on June 30, 1971).

The Challenger space shuttle a few moments after the rupture took place in the external tank. Credit: NASA
The Challenger space shuttle a few moments after the rupture took place in the external tank. Credit: NASA

Remembering Apollo 1’s Tragic Anniversary: ‘It Was Too Late From The Beginning’

On this day (Jan. 27) in 1967, NASA astronauts Virgil “Gus” Grissom, Ed White and Roger Chaffee died in a pad fire inside of the Apollo 1 spacecraft that was supposed to lift off only a month hence. The tragedy shocked NASA, which was then aiming for manned landings on the moon, and caused an in-depth investigation into the spacecraft’s construction and the cause of the fire.

Above, you can see one of the first news reports after the fire took place, from ABC’s Jules Bergman and a correspondent at “Cape Kennedy” (which is called Cape Canaveral today, referring to an area adjacent to the Kennedy Space Center where the launch was supposed to take place.) “It was too late from the beginning,” Bergman said in the report, referring to the frantic effort to get the astronauts out of their burning spacecraft.

An investigation determined that a spark flew from somewhere inside of the spacecraft and easily ignited in the pure-oxygen atmosphere, fuelled by fire-friendly materials inside the spacecraft. The astronauts were unable to get out quickly because the hatch was complicated to open. The redesigned Apollo spacecraft featured a swift-to-open hatch, fewer flammable materials, covered electrical connections (to mitigate against short-circuits), and a mixed atmosphere of oxygen and nitrogen on the ground.

Safety measures arising from the tragedy did help with saving astronauts on other flights, notably Apollo 13. That mission saw an oxygen tank explode en route to the moon in April 1970.

Every year, NASA has a day of remembrance to commemorate lost crews. The Apollo 1 anniversary marks a solemn week in the agency, as it comes one day before the anniversary of the 1986 Challenger explosion that killed seven astronauts (Jan. 28) and a few days before the 2003 anniversary of the Columbia shuttle breakup, which killed another seven people (Feb. 1).

Four cosmonauts have died during spaceflight, all upon re-entry: Vladimir Komarov (during Soyuz 1 on April 24, 1967) and Georgi Dobrovolskiy, Viktor Patsayev, and Vladislav Volkov (during Soyuz 11 on June 30, 1971).

Training accidents have also claimed a few lives; a list of American ones is maintained at the Astronaut Memorial Foundation.

The Apollo 1 capsule after the fire. Credit: NASA
The Apollo 1 capsule after the fire. Credit: NASA

Rare Amateur Video of Challenger Disaster Surfaces

Visit msnbc.com for breaking news

A rare home video that captured the explosion of the space shuttle Challenger Shuttle on Jan. 28, 1986, has been found. Bob Karman and his family were on a return trip from vacation to Disney World, and filmed the launch from the Orlando airport. This is thought to be only the second amateur video taken of the launch, back when home video cameras were just becoming popular.

Far Above the World

Astronaut Bruce McCandless untethered above the Earth on Feb. 12, 1984. (NASA)

[/caption]

28 years ago today, NASA astronaut Bruce McCandless left the relative safety of Challenger’s payload bay and went untethered into orbit around Earth, venturing farther than anyone ever before.

The historic photo above was taken when McCandless was 320 feet from the orbiter — about the length of an American football field, or just shy of the width of the International Space Station.

The free-flying endeavor was possible because of McCandless’ nitrogen-powered jet-propelled backpack, called a Manned Maneuvering Unit (MMU). It attached to the space suit’s life-support system and was operated by hand controls, allowing untethered access to otherwise inaccessible areas of the orbiter and was also used in the deployment, service and retrieval of satellites.

Astronaut Dale Gardner using the MMU during STS-51A in Nov. 1984 to travel to the Westar VI satellite. (NASA)

The MMU used a non-contaminating nitrogen propellant that could be recharged in the orbiter. It weighed 140 kg (308 lbs) and has a built-in 35mm camera.

After the Challenger disaster, the MMU was deemed too risky and was discontinued. But for a brief period of time in the early ’80s, humans had the means for really “soaring to new heights”.

Image credits: NASA