Io, Jupiter’s Volcanic Moon

This global view of Jupiter's moon, Io, was obtained during the tenth orbit of Jupiter by NASA's Galileo spacecraft. Credit: NASA
This global view of Jupiter's moon, Io, was obtained during the tenth orbit of Jupiter by NASA's Galileo spacecraft. Credit: NASA

Exploring the Solar System is like peeling an onion. With every layer removed, one finds fresh mysteries to ponder over, each one more confounding than the last. And this is certainly the case when it comes to Jupiter’s system of moons, particularly its four largest – Io, Europa, Ganymede and Callisto. Known as the Galilean Moons, in honor of their founder, these moons possess enough natural wonders to keep scientists busy for centuries.

As Jupiter’s innermost moon, it is also the fourth-largest moon in the Solar System, has the highest density of any known moon, and is the driest known object in the Solar System. It is also one of only four known bodies that experiences active volcanism and – with over 400 active volcanoes – it is the most geologically active body in the Solar System.

Continue reading “Io, Jupiter’s Volcanic Moon”

Jupiter’s Moon Callisto

Callisto has many more craters than Europa and a thicker icy crust. Image credit: NASA/JPL
Callisto has many more craters than Europa and a thicker icy crust. Image credit: NASA/JPL

With 67 confirmed satellites, Jupiter has the largest system of moons in the Solar System. The greatest of these are the four major moons of Io, Europa, Ganymede and Callisto – otherwise known as the Galilean Moons. Named in honor of their founder, these moons are not only comparable in size to some planets (such as Mercury), they are also some of the few places outside of Earth where liquid water exists, and perhaps even life.

But it is Callisto, the fourth and farthest moon of Jupiter, that may be the most rewarding when it comes to scientific research. In addition to the possibility of a subsurface ocean, this moon is the only Galilean far enough outside of Jupiter’s powerful magnetosphere that it does not experience harmful levels of radiation. This, and the prospect of finding life, make Callisto a prime candidate for future exploration.

Discovery and Naming:

Along with Io, Europa and Ganymede, Callisto was discovered in January of 1610 by Galileo Galilei using a telescope of his own design. Like all the Galilean Moons, it takes its name from one of Zeus’ lovers in classic Greek mythology. Callisto was a nymph (or the daughter of Lycaon) who was associated with the goddess of the hunt, Artemis.

The name was suggested by German astronomer Simon Marius, apparently at the behest of Johannes Kepler. However, Galileo initially refused to use them, and the moons named in his honor were designed as Jupiter I through IV, based on their proximity to their parent planet. Being the farthest planet from Jupiter, Callisto was known as Jupiter IV until the 20th century, by which time, the names suggested by Marius were adopted.

Galilean Family Portrait
The Galilean moons to scale, with Callisto in the bottom left corner. Credit: NASA/JPL

Size, Mass and Orbit:

With a mean radius of 2410.3 ± 1.5 km (0.378 Earths) and a mass of 1.0759 × 1023 kg (0.018 Earths), Callisto is the second largest Jupiter’s moons (after Ganymede) and the third largest satellite in the solar system. Much like Ganymede, it is comparable in size to Mercury – being 99% as large – but due to its mixed composition, it has less than one-third of Mercury mass.

Callisto orbits Jupiter at an average distance (semi-major axis) of 1,882,700 km. It has a very minor eccentricity (0.0074) and ranges in distance from 1,869,000 km at periapsis to 1,897,000 km at apoapsis. This distance, which is far greater than Ganymede’s, means that Callisto does not take part in the mean-motion resonance that Io, Europa and Ganymede do.

Much like the other Galileans, Callisto’s rotation is synchronous with its orbit. This means that it takes the same amount of time (16.689 days) for Callisto to complete a single orbit of Jupiter and a single rotation on its axis. Its orbit is very slightly eccentric and inclined to the Jovian equator, with the eccentricity and inclination changing over the course of centuries due to solar and planetary gravitational perturbations.

Size comparison of Earth, Moon and Callisto. Credit: NASA/JPL/DLR/Gregory H. Revera
Size comparison of Earth, Moon and Callisto. Credit: NASA/JPL/DLR/Gregory H. Revera

Unlike the other Galileans, Callisto’s distant orbit means that it has never experienced much in the way of tidal-heating, which has had a profound impact on its internal structure and evolution. Its distance from Jupiter also means that the charged particles from Jupiter’s magnetosphere have had a very minor influence on its surface.

Composition and Surface Features:

The average density of Callisto, at 1.83 g/cm3, suggests a composition of approximately equal parts of rocky material and water ice, with some additional volatile ices such as ammonia. Ice is believed to constitute 49-55% of the moon, with the rock component likely made up of chondrites, silicates and iron oxide.

Callisto’s surface composition is thought to be similar to its composition as a whole, with water ice constituting 25-50% of its overall mass. High-resolution, near-infrared and UV spectra imaging have revealed the presence of various non-ice materials, such as magnesium and iron-bearing hydrated silicates, carbon dioxide, sulfur dioxide, and possibly ammonia and various organic compounds.

Model of Callisto's internal structure showing a surface ice layer, a possible liquid water layer, and an ice–rock interior. Credit: NASA/JPL
Model of Callisto’s internal structure showing a surface ice layer, a possible liquid water layer, and an ice–rock interior. Credit: NASA/JPL

Beneath the surface is an icy lithosphere that is between 80-150 m thick. A salty ocean 50–200 km deep is believed to exist beneath this, thanks to the presence of radioactive elements and the possible existence of ammonia. Evidence of this ocean include Jupiter’s magnetic field, which shows no signs of penetrating Callisto’s surface. This suggests a layer of highly conductive fluid that is at least 10 km in depth. However, if this water contains ammonia, which is more likely, than it could be up to 250-300 km.

Beneath this hypothetical ocean, Callisto’s interior appears to be composed of compressed rocks and ices, with the amount of rock increasing with depth. This means, in effect, that Callisto is only partially differentiated, with a small silicate core no larger than 600 km (and a density of 3.1-3.6 g/cm³) surrounded by a mix of ice and rock.

Spectral data has also indicated that Callisto’s surface is extremely heterogeneous at the small scale. Basically, the surface consists of small, bright patches of pure water ice, intermixed with patches of a rock–ice mixture, and extended dark areas made of a non-ice material.

Compared to the other Galilean Moons, Callisto’s surface is quite dark, with a surface albedo of about 20%. Another difference is the nature of its asymmetric appearance. Whereas with the other Galileans, the leading hemisphere is lighter than the trailing one, with Callisto the opposite is true.

Interior density structures created by an outer solar system late heavy bombardment onto Ganymede (top row) and Callisto (bottom row). Credit: SwRI
Interior density structures created by an outer solar system late heavy bombardment onto Ganymede (top row) and Callisto (bottom row). Credit: SwRI

An immediately obvious feature about Callisto’s surface is the ancient and heavily cratered nature of it. In fact, the surface is the most cratered in the Solar System and is almost entirely saturated by craters, with newer ones having formed over older ones. What’s more, impact craters and their associated structures are the only large features on the surface. There are no mountains, volcanoes or other endogenic tectonic features.

Callisto’s impact craters range in size from 0.1 km to over 100 km, not counting the multi-ring structures. Small craters, with diameters less than 5 km, have simple bowl or flat-floored shapes, whereas those that measure 5–40 km usually have a central peak.

Larger impact features, with diameters that range from 25–100 km have central pits instead of peaks. Those with diameters over 60 km can have central domes, which are thought to result from central tectonic uplift after an impact.

The largest impact features on Callisto’s surface are multi-ring basins, which probably originated as a result of post-impact concentric fracturing which took place over a patch of lithosphere that overlay a section of soft or liquid material (possibly a patch of the interior ocean). The largest of these are Valhalla and Asgard, whose central, bright regions measure 600 and 1600 km in diameter (respectively) with rings extending farther outwards.

Voyager 1 image of Valhalla, a multi-ring impact structure 3800 km in diameter. Credit: NASA/JPL
Voyager 1 image of Valhalla, a multi-ring impact structure 3800 km in diameter. Credit: NASA/JPL

The relative ages of the different surface units on Callisto can be determined from the density of impact craters on them – the older the surface, the denser the crater population. Based on theoretical considerations, the cratered plains are thought to be ~4.5 billion years old, dating back almost to the formation of the Solar System.

The ages of multi-ring structures and impact craters depend on chosen background cratering rates, and are estimated by different researchers to vary between 1 and 4 billion years of age.

Atmosphere:

Callisto has a very tenuous atmosphere composed of carbon dioxide which has an estimated surface pressure of 7.5  × 10-¹² bar (0.75 micro Pascals) and a particle density of 4 × 108 cm-3. Because such a thin atmosphere would be lost in only about 4 days, it must be constantly replenished, possibly by slow sublimation of carbon dioxide ice from Callisto’s icy crust.

While it has not been directly detected, it is believed that molecular oxygen exists in concentrations 10-100 times greater than CO². This is evidenced by the high electron density of the planet’s ionosphere, which cannot be explained by the photoionization of carbon dioxide alone. However, condensed oxygen has been detected on the surface of Callisto, trapped within its icy crust.

Habitability:

Much like Europa and Ganymede, and Saturn’s moons of Enceladus, Mimas, Dione, Titan, the possible existence of a subsurface ocean on Callisto has led many scientists to speculate about the possibility of life. This is particularly likely if the interior ocean is made up of salt-water, since halophiles (which thrive in high salt concentrations) could live there.

In addition, the possibility of extra-terrestrial microbial life has also been raised with respect to Callisto. However, the environmental conditions necessary for life to appear (which include the presence of sufficient heat due to tidal flexing) are more likely on Europa and Ganymede. The main difference is the lack of contact between the rocky material and the interior ocean, as well as the lower heat flux in Callisto’s interior.

In essence, while Callisto possesses the necessary pre-biotic chemistry to host life, it lacks the necessary energy. Because of this, the most likely candidate for the existence of extra-terrestrial life in Jupiter’s system of moons remains Europa.

Exploration:

The first exploration missions to Callisto were the Pioneer 10 and 11 spacecrafts, which conducted flybys of the Galilean moon in 1973 and 1974, respectively, But these missions provided little additional information beyond what had already learned through Earth-based observations. In contrast, the Voyager 1 and 2 spacecraft, which conducted flybys of the moon in 1979, managed to image more than half the surface and precisely measured Callisto’s temperature, mass and shape.

Capturing Callisto
New Horizons Long Range Reconnaissance Imager (LORRI) captured these two images of Jupiter’s outermost large moon, Callisto, during its flyby in February 2007. Credit: NASA/JPL

Further exploration took place between 1994 and 2003, when the Galileo spacecraft performed eight close flybys with Callisto. The orbiter completed the global imaging of the surface and delivered a number of pictures with a resolution as high as 15 meters. In 2000, while en route to Saturn, the Cassini spacecraft acquired high-quality infrared spectra of the Galilean satellites, including Callisto.

In February–March 2007, while en route to Pluto, the New Horizons probe obtained new images and spectra of Callisto. Using its Linear Etalon Imaging Spectral Array (LEISA) instrument, the probe was able to reveal how lighting and viewing conditions affect infrared spectrum readings of its surface water ice.

The next planned mission to the Jovian system is the European Space Agency’s Jupiter Icy Moon Explorer (JUICE), due to launch in 2022. Ostensibly geared towards exploring Europa and Ganymede, the mission profile also includes several close flybys of Callisto.

Colonization:

Compared to the other Galileans, Callisto presents numerous advantages as far as colonization is concerned. Much like the others, the moon has an abundant supply of water in the form of surface ice (but also possibly liquid water beneath the surface). But unlike the others, Callisto’s distance from Jupiter means that colonists would have far less to worry about in terms of radiation.

In 2003, NASA conducted a conceptual study called Human Outer Planets Exploration (HOPE) regarding the future human exploration of the outer Solar System. The target chosen to consider in detail was Callisto, for the purposes of investigating the possible existence of life forms embedded in the ice crust on this moon and on Europa.

Artist's impression of a base on Callisto. Credit: NASA
Artist’s impression of a base on the icy surface of Callisto. Credit: NASA

The study proposed a possible surface base on Callisto where a crew could “teleoperate a Europa submarine and excavate Callisto surface samples near the impact site”. In addition, this base could extract water from Callisto’s ample supply of water ices to produce rocket propellant for further exploration of the Solar System.

The advantages of a base on Callisto include low radiation (due to its distance from Jupiter) and geological stability. Such a base could facilitate exploration on other Galilean Moons, and be an ideal location for a Jovian system way station, servicing spacecraft heading farther into the outer Solar System – which would likely take the form of craft using a gravity assist from a close flyby of Jupiter.

Reports filed by NASA’s Glenn Research Center and Langley Research Center – in December and February of 2003, respectively – both outlined possible manned missions to Callisto, as envisioned by HOPE. According to these reports, a mission that would likely involve a ship using a Mangetoplasmadynamic (MPD) or Nuclear-Electric Propulsion (NEP) drive system, and equipped to generate artificial gravity, could be mounted in the 2040s.

So while Callisto may not be the best target in the search for extra-terrestrial life, it may be the most hospitable of Jupiter’s moons for human life. In either case, any future missions to Jupiter will likely include a stopovers to Callisto, with the intent of investigating both of these possibilities.

We have many great articles on Callisto, Jupiter, and its system of moons here at Universe Today. Here’s one about how impacts effected Callisto’s interior, And here is one on all of the Galilean Moons.

For more information, check out NASA’s Solar System Exploration page on Callisto.

Astronomy Cast offers has a good episode on the subject, titled Episode 57: Jupiter’s Moons.

Jupiter’s Moon Ganymede

Ganymede
This Galielo image shows Jupiter's moon Ganymede in enhanced colour. The JWST aimed its instruments at our Solar System's largest moon to study its surface. Credit: NASA

In 1610, Galileo Galilei looked up at the night sky through a telescope of his own design. Spotting Jupiter, he noted the presence of several “luminous objects” surrounding it, which he initially took for stars. In time, he would notice that these “stars” were orbiting the planet, and realized that they were in fact Jupiter’s moons – which would come to be named Io, Europa, Ganymede and Callisto.

Of these, Ganymede is the largest, and boasts many fascinating characteristics. In addition to being the largest moon in the Solar System, it is also larger than even the planet Mercury. It is the only satellite in the Solar System known to possess a magnetosphere, has a thin oxygen atmosphere, and (much like its fellow-moons, Europa and Callisto) is believed to have an interior ocean.

Continue reading “Jupiter’s Moon Ganymede”

Jupiter’s Moon Europa

Europa
Jupiter’s icy moon Europa. Credits: NASA/Jet Propulsion Laboratory, SETI Institute

Jupiter‘s four largest moons – aka. the Galilean Moons, consisting of Io, Europa, Ganymede, and Callisto – are nothing if not fascinating. Ever since their discovery over four centuries ago, these moons have been a source of many great discoveries. These include the possibility of internal oceans, the presence of atmospheres, volcanic activity, a magnetosphere (Ganymede), and the possibility of having more water than Earth.

But arguably, the most fascinating of the Galilean Moons is Europa: the sixth closest moon to Jupiter, the smallest of the four, and the sixth-largest moon in the Solar System. In addition to having an icy surface and a possible warm-water interior, this moon is considered to be one of the most likely places for finding life beyond Earth.

Continue reading “Jupiter’s Moon Europa”

What are the Galilean Moons?

Illustration of Jupiter and the Galilean satellites. Credit: NASA

It’s no accident that Jupiter shares its name with the king of the gods. In addition to being the largest planet in our Solar System – with two and a half times the mass of all the other planets combined – it is also home to some of the largest moons of any Solar planet. Jupiter’s largest moons are known as the Galileans, all of which were discovered by Galileo Galilei and named in his honor.

They include Io, Europa, Ganymede, and Callisto, and are the Solar System’s fourth, sixth, first and third largest satellites, respectively. Together, they contain almost 99.999% of the total mass in orbit around Jupiter, and range from being 400,000 and 2,000,000 km from the planet. Outside of the Sun and eight planets, they are also among the most massive objects in the Solar System, with radii larger than any of the dwarf planets.

Continue reading “What are the Galilean Moons?”

Pluto’s Closeup Will Be Awesome Based On Jupiter Pics From New Horizons Spacecraft

A montage of images taken of Jupiter and its moon Io (foreground) by the New Horizons mission in 2007. Jupiter is shown in infrared wavelengths while Io is close to true-color. On top of Io is an eruption from the volcano Tvashtar. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

New Horizons, you gotta wake up this weekend. There’s so much work ahead of you when you reach Pluto next year! The spacecraft has been sleeping quietly for weeks in its last great hibernation before the dwarf planet close encounter in July. On Saturday (Dec. 6), the NASA craft will open its eyes and begin preparations for that flyby.

How cool will those closeups of Pluto and its moons look? A hint comes from a swing New Horizons took by Jupiter in 2007 en route. It caught a huge volcanic plume erupting off of the moon Io, picked up new details in Jupiter’s atmosphere and gave scientists a close-up of a mysterious “Little Red Spot.” Get a taste of the fun seven years ago in the gallery below.

An eruption from the Tvashtar volcano on Io, Jupiter's moon, in several different wavelength images taken by the New Horizons spacecraft in 2007. The left image from the Long Range Reconnaissance Imager (LORRI) shows lava glowing in the night. At top right, the Multispectral Visible Imaging Camera (MVIC) spotted sulfur and sulfor dioxide deposits on the sunny side of Io. The remaining image from the Linear Etalon Imaging Spectral Array (LEISA) shows volcanic hotspots on Io's surface. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
An eruption from the Tvashtar volcano on Io, Jupiter’s moon, in several different wavelength images taken by the New Horizons spacecraft in 2007. The left image from the Long Range Reconnaissance Imager (LORRI) shows lava glowing in the night. At top right, the Multispectral Visible Imaging Camera (MVIC) spotted sulfur and sulfor dioxide deposits on the sunny side of Io. The remaining image from the Linear Etalon Imaging Spectral Array (LEISA) shows volcanic hotspots on Io’s surface. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Jupiter's "Little Red Spot" seen by the New Horizons spacecraft in 2007. The spot turned red in 2005 for reasons scientists were then unsure of, but speculated it could be due to stuff from inside the atmosphere being stirred up by a storm surge. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Jupiter’s “Little Red Spot” seen by the New Horizons spacecraft in 2007. The spot turned red in 2005 for reasons scientists were then unsure of, but speculated it could be due to stuff from inside the atmosphere being stirred up by a storm surge. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

A "family portrait" of the four Galilean satellites around Jupiter taken by the New Horizons spacecraft and released in 2007. From left, the montage includes Io, Europa, Ganymede and Callisto. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
A “family portrait” of the four Galilean satellites around Jupiter taken by the New Horizons spacecraft and released in 2007. From left, the montage includes Io, Europa, Ganymede and Callisto. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

A composite of Jupiter's bands (and atmospheric structures) taken in several images by the New Horizons Multispectral Visual Imaging Camera, showing differences due to sunlight and wind. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
A composite of Jupiter’s bands (and atmospheric structures) taken in several images by the New Horizons Multispectral Visual Imaging Camera, showing differences due to sunlight and wind. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

In February and March 2007, a huge plume erupted from the Tvashtar volcano on Jupiter's moon Io. The image sequence taken by New Horizons showed the largest such explosion then viewed by a spacecraft -- even accounting for the Galileo spacecraft that examined Io between 1996 and 2001. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
In February and March 2007, a huge plume erupted from the Tvashtar volcano on Jupiter’s moon Io. The image sequence taken by New Horizons showed the largest such explosion then viewed by a spacecraft — even accounting for the Galileo spacecraft that examined Io between 1996 and 2001. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

The New Horizons flyby of Io in 2007 (right) revealed a changing feature on the surface of the Jupiter moon since Galileo's image of 1999 (left.) Inside the circle, a new volcanic eruption spewed material; other pictures showed this region was still active. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
The New Horizons flyby of Io in 2007 (right) revealed a changing feature on the surface of the Jupiter moon since Galileo’s image of 1999 (left.) Inside the circle, a new volcanic eruption spewed material; other pictures showed this region was still active. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Jupiter-Bound Spacecraft Takes A Small Step To Seek Habitable Worlds

Artist's impression of the Jupiter Icy Moons Explorer (JUICE) near Jupiter and one of its moons, Europa. Credit: ESA/AOES

It takes years of painstaking work to get a spacecraft off the ground. So when you have a spacecraft like JUICE (the Jupiter Icy Moons Explorer) set to launch in 2022, you need to back up about a decade to get things figured out. How will the spacecraft get there? What science instruments will it carry? What will the spacecraft look like and what systems will support its work?

JUICE just hit another milestone in its development a few days ago, when the European Space Agency gave the go-ahead for the “implementation phase” — the part where the spacecraft design begins to take shape. The major goal of the mission will be to better understand those moons around Jupiter that could be host to life.

The spacecraft will reach Jupiter’s system in 2030 and begin with observations of the mighty planet — the biggest in our Solar System — to learn more about the gas giant’s atmosphere, faint rings and magnetic environment. It also will be responsible for teaching us more about Europa (an icy world that could host a global ocean) and Callisto (a moon pockmarked with the most craters of anything in the Solar System.)

Its major departure from past missions, though, will come when JUICE enters orbit around Ganymede. This will the first time any spacecraft has circled an icy moon repeatedly; past views of the moon have only come through flybys by the passing-through spacecraft (such as Pioneer and Voyager) and the Galileo mission, which stuck around Jupiter’s system in the 1990s and early 2000s.

Ganymede
Ganymede Credit: NASA

With Ganymede, another moon thought to host a global ocean, JUICE will examine its surface and insides. What makes the moon unique in our neighborhood is its ability to create its own magnetic field, which creates interesting effects when it interacts with Jupiter’s intense magnetic environment.

“Jupiter’s diverse Galilean moons – volcanic Io, icy Europa and rock-ice Ganymede and Callisto – make the Jovian system a miniature Solar System in its own right,” the European Space Agency stated when the mission was selected in 2012.

“With Europa, Ganymede and Callisto all thought to host internal oceans, the mission will study the moons as potential habitats for life, addressing two key themes of cosmic vision: what are the conditions for planet formation and the emergence of life, and how does the Solar System work?”

JUICE is one of several major spacecraft ESA plans to launch in the next couple of decades. You can read more about the other Cosmic Vision candidates at this ESA website.

Source: European Space Agency

Observing Alert: Rare Triple Transit Of Jupiter’s Moons Happens Friday Night (Oct. 11-12)

Jupiter with polka dot shadows cast by Io, Europa and Callisto as depicted around 1 a.m. EDT Oct. 12. Watch for the Great Red Spot to come into view during the transit. Created with Claude Duplessis' Meridian software

Talk about a great fall lineup. Three of Jupiter’s four brightest moons plan a rare show for telescopic observers on Friday night – Saturday morning Oct. 11-12. For a span of just over an hour, Io, Europa and Callisto will simultaneously cast shadows on the planet’s cloud tops, an event that hasn’t happened since March 28, 2004.

Who doesn’t remember their first time looking at Jupiter and his entourage of dancing moons in a telescope? Because each moves at a different rate depending on its distance from the planet, they’re constantly on the move like kids in a game of musical chairs. Every night offers a different arrangement.

Jupiter and its four brightest moons seen in a small telescope. Credit: Bob King
Jupiter and its four brightest moons seen in a small telescope. Credit: Bob King

Some nights all four of the brightest are strung out on one side of the planet, other nights only two or three are visible, the others hidden behind Jupiter’s “plus-sized” globe. Occasionally you’ll be lucky enough to catch the shadow of one of moons as it transits or crosses in front of the planet. We call the event a shadow transit, but to someone watching from Jupiter, the moon glides in front of the sun to create a total solar eclipse.

Since the sun is only 1/5 as large from Jupiter as seen from Earth, all four moons are large enough to completely cover the sun and cast inky shadows. To the eye they look like tiny black dots of varying sizes. Europa, the smallest, mimics a pinprick. The shadows of Io and Callisto are more substantial. Ganymede, the solar system’s largest moon at 3,269 miles (5,262 km), looks positively plump compared to the others. Even a small telescope magnifying around 50x will show it.

Jupiter on Sept. 24 with its moon Europa (at left) casting a pinhead black shadow on Jupiter's clouds. Credit: John Chumack
Jupiter on Sept. 24 with its moon Europa (at left) casting a pinhead black shadow on Jupiter’s clouds. Credit: John Chumack

The three inner satellites – Io, Europa and Ganymede – have shadow transits every orbit. Distant Callisto only transits when Jupiter’s tilt relative to Earth is very small, i.e. the plane of the planet’s moons is nearly edge-on from our perspective. Callisto transits occur in alternating “seasons” lasting about 3 years apiece. Three years of shadow play are followed by three years of shadowless misses. Single transits are fairly common; you can find tables of them online like this one from Project Pluto or plug in time and date into a free program like Meridian for a picture and list of times.

Because Io, Europa and Ganymede orbit in a 4:2:1 resonance (Io revolves four times around Jupiter in the time it takes Ganymede to orbit once; Europa completes two orbits for Ganymede's one) a "quadruple transit" is impossible. Credit: Matma Rex / Wikipedia
Because Io, Europa and Ganymede orbit in a 4:2:1 resonance (Io revolves four times around Jupiter in the time it takes Ganymede to orbit once; Europa completes two orbits for Ganymede’s one) it’s impossible for all three to line up – along with Callsto – for a “quadruple transit”. Credit: Matma Rex / Wikipedia

Seeing two shadows inch across Jupiter’s face is very uncommon, and three are as rare as a good hair day for Donald Trump. Averaged out, triple transits occur once or twice a decade. Friday night Oct. 11 each moon enters like actors in a play. Callisto appears first at 11:12 p.m. EDT followed by Europa and then Io. By 12:32 a.m. all three are in place.

Catch them while you can. Groups like these don’t last long. A little more than an hour later Callisto departs, leaving just two shadows.  You’ll find the details below. All times are Eastern Daylight or EDT. Subtract one hour for Central time and add four hours for BST (British Summer Time):

* Callisto’s shadow enters the disk – 11:12 p.m. Oct. 11
* Europa – 11:24 p.m.
* Io – 12:32 a.m.
** TRIPLE TRANSIT from 12:32 – 1:37 a.m.
* Callisto departs – 1:37 a.m.
* Europa departs – 2:01 a.m.
* Io departs – 2:44 a.m.

Looking at Jupiter from high above the plane of the solar system, we can picture better how shadow transits and eclipses happen. Credit: Garrett Serviss from "Pleasures of the Telescope" (annotations: Bob King)
Looking at Jupiter from high above the plane of the solar system in this diagram from more than a century ago, we can better picture how shadow transits and eclipses happen. The tiny disk of Io and the shadow of Ganymede are seen in transit; Callisto is about to be eclipsed by Jupiter’s shadow.  Credit: Garrett Serviss from “Pleasures of the Telescope” (annotations: Bob King)

The triple transit will be seen across the eastern half of the U.S., Europe and western Africa. Those living on the East Coast have the best view in the U.S. with Jupiter some 20-25 degrees high in the northeastern sky around 1 a.m. local time. Things get dicier in the Midwest where Jupiter climbs to only 5-10 degrees. From the mountain states the planet won’t  rise until Callisto’s shadow has left the disk, leaving a two-shadow consolation prize. If you live in the Pacific time zone and points farther west, you’ll unfortunately miss the event altogether.

From the Eastern Time Zone Jupiter will be well-placed in the eastern sky around the time of mid-transit. Created with Stellarium
From the Eastern Time Zone Jupiter will be well-placed in the eastern sky during the transit. Created with Stellarium

Key to seeing all three shadows clearly, especially if Jupiter is low in the sky, is steady air or what skywatchers call “good seeing”. The sky can be so clear you’d swear there’s a million stars up there, but a look through the telescope will sometimes show dancing, blurry images due to invisible air turbulence. That’s “bad seeing”. Unfortunately, bad seeing is more common near the horizon where we peer through a greater thickness of atmosphere. But don’t let that keep you inside Friday night. With a spell of steady air, all you need is a 4-inch or larger telescope magnifying around 100x to spot all three.

The March 28, 2004 triple transit. Shadows from left: Ganymede, Io and Callisto. You can also see the disks of Io (white dot) and Ganymede (blue dot) in this photo taken in infrared light by the Hubble Space Telescope. Credit: NASA/ESA
The March 28, 2004 triple transit. Shadows from left: Ganymede, Io and Callisto. You can also see the disks of Io (white dot) and Ganymede (blue dot) in this photo taken in infrared light by the Hubble Space Telescope. Credit: NASA/ESA

If bad weather blocks the view, there are two more triple transits coming up soon – a 95-minute-long event on June 3, 2014 starring Europa, Ganymede and Callisto (not visible in the Americas) and a 25-minute show on Jan. 24, 2015 featuring Io, Europa and Callisto and visible across Western Europe and the Americas. That’s it until dual triple transits in 2032.

 

One of Jupiter’s Moons is Melted!

The two outer moons of Jupiter, with the cutaway showing the extent of melting caused by an astroid/comet bombardment. Credit: Amy Barr, SWRI

[/caption]

Jupiter’s two moons Ganymede and Callisto could be considered fraternal twins. They have a similar composition and size, but visually, they are different. Also, data from the Galileo and Voyager spacecraft reveal the two moons’ interiors are very dissimilar, as well. The reasons for the differences have eluded scientists for 30 years, but a new study provides an explanation. During the Late Heavy Bombardment, Callisto escaped relatively unscathed, while Ganymede was a battered child; so much so that the later moon melted. “Impacts during this period melted Ganymede so thoroughly and deeply that the heat could not be quickly removed,” said Dr. Amy Barr of the Southwest Research Institute. “All of Ganymede’s rock sank to its center the same way that all the chocolate chips sink to the bottom of a melted carton of ice cream. Callisto received fewer impacts at lower velocities and avoided complete melting.”

Barr and and Dr. Robin Canup created a model showing how Jupiter’s strong gravity focused cometary impactors onto Ganymede and Callisto 3.8 billion years ago, during the LHB period. Each impact onto Ganymede or Callisto’s mixed ice and rock surface creates a pool of liquid water, allowing rock in the melt pool to sink to the moon’s center.

But Ganymede is closer to Jupiter and therefore was hit by twice as many icy impactors as Callisto. Additionally, the impactors hitting Ganymede had a higher average velocity. Modeling by Barr and Canup shows that core formation begun during the late heavy bombardment becomes energetically self-sustaining in Ganymede but not Callisto.

Interior density structures created by an outer solar system late heavy bombardment onto Ganymede (top row) and Callisto (bottom row). Credit: SwRI

Watch a movie that shows the effect of an outer solar system late heavy bombardment on the interior structure of Callisto (top model in the movie) and Ganymede (bottom).

“Similar to Earth and Venus, Ganymede and Callisto are twins, and understanding how they were born the same and grew up to be so different is of tremendous interest to planetary scientists,” explains Barr. “Our study shows that Ganymede and Callisto record the fingerprints of the early evolution of the solar system, which is very exciting and not at all expected.”

The “Ganymede-Callisto dichotomy,” has been a classical problem in comparative planetology, a field of study that seeks to explain why some solar system objects with similar bulk characteristics have radically different appearances. The study by Barr and Canup also links the evolution of Jupiter’s moons to the orbital migration of the outer planets and the bombardment history of Earth’s moon.

Their article, “Origin of the Ganymede-Callisto dichotomy by impacts during the late heavy bombardment,” by Barr and Canup, appears online in Nature Geoscience on Jan. 24, 2010.

Source: SwRI