This Star has been Kicked Out of the Milky Way. It Knows What It Did.

Researchers from the University of Michigan confirm that a runaway star was ejected from the Milky Way's disk rather than the galactic core. Image Credit: Kohei Hattori

Every once in a while, the Milky Way ejects a star. The evicted star is typically ejected from the chaotic area at the center of the galaxy, where our Super Massive Black Hole (SMBH) lives. But at least one of them was ejected from the comparatively calm galactic disk, a discovery that has astronomers rethinking this whole star ejection phenomenon.

Continue reading “This Star has been Kicked Out of the Milky Way. It Knows What It Did.”

Using Black Holes to Conquer Space: The Halo Drive!

The idea of one day traveling to another star system and seeing what is there has been the fevered dream of people long before the first rockets and astronauts were sent to space. But despite all the progress we have made since the beginning of the Space Age, interstellar travel remains just that – a fevered dream. While theoretical concepts have been proposed, the issues of cost, travel time and fuel remain highly problematic.

A lot of hopes currently hinge on the use of directed energy and lightsails to push tiny spacecrafts to relativistic speeds. But what if there was a way to make larger spacecraft fast enough to conduct interstellar voyages? According to Prof. David Kipping – the leader of Columbia University’s Cool Worlds lab – future spacecraft could rely on a Halo Drive, which uses the gravitational force of a black hole to reach incredible speeds.

Continue reading “Using Black Holes to Conquer Space: The Halo Drive!”

Gamma Ray Telescopes could Detect Starships Powered by Black Hole

Illustration of the supermassive black hole at the center of the Milky Way. Credit: NRAO/AUI/NSF

In the course of looking for possible signs of Extra-Terrestrial Intelligence (ETI), scientists have had to do some really outside-of-the-box thinking. Since it is a foregone conclusion that many ETIs would be older and more technologically advanced than humanity, those engaged in the Search for Extra-Terrestrial Intelligence (SETI) have to consider what a more advanced species would be doing.

A particularly radical idea that has been suggested is that spacefaring civilizations could harness radiation emitted from black holes (Hawking radiation) to generate power. Building on this, Louis Crane – a mathematician from Kansas State University (KSU) – recently authored a study that suggests how surveys using gamma telescopes could find evidence of spacecraft powered by tiny artificial black holes.

Continue reading “Gamma Ray Telescopes could Detect Starships Powered by Black Hole”

Astronomers See the Exact Moment a Supernova Turned into a Black Hole (or Neutron Star)

A look at The Cow (approximately 80 days after explosion) from the W.M. Keck Observatory in Maunakea, Hawaii. The Cow is nestled in the CGCG 137-068 galaxy, 200 million light years from Earth. Image Credit:Raffaella Margutti/Northwestern University

On June 17th 2018, the ATLAS (Asteroid Terrestrial-impact Last Alert System) survey’s twin telescopes spotted something extraordinarily bright in the sky. The source was 200 million light years away in the constellation Hercules. The object was given the name AT2018cow or “The Cow.” The Cow flared up quickly, and then just as quickly it was gone.

What was it?

Continue reading “Astronomers See the Exact Moment a Supernova Turned into a Black Hole (or Neutron Star)”

Astronomers Count all the Photons in the Universe. Spoiler Alert: 4,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 Photons

Imagine yourself in a boat on a great ocean, the water stretching to the distant horizon, with the faintest hints of land just beyond that. It’s morning, just before dawn, and a dense fog has settled along the coast. As the chill grips you on your early watch, you catch out of the corner of your eye a lighthouse, feebly flickering through the fog.

And – yes – there! Another lighthouse, closer, its light a little stronger. As you scan the horizon more lighthouses signal the dangers of the distant coast.
Continue reading “Astronomers Count all the Photons in the Universe. Spoiler Alert: 4,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 Photons”

Gas and Dust Seen Swirling Around our Galaxy’s Supermassive Black Hole

ALMA images show gas and dust swirling around the supermassive black hole at the center of the Milky Way. Image Credit: ALMA (ESO/NAOJ/NRAO)/ J. R. Goicoechea (Instituto de Física Fundamental, CSIC, Spain)

At the heart of the Milky Way Galaxy lurks a Supermassive Black Hole (SMBH) named Sagittarius A* (Sag. A-star). Sag. A* is an object of intense study, even though you can’t actually see it. But new images from the Atacama Large Millimetre/sub-millimetre Array (ALMA) reveal swirling high-speed clouds of gas and dust orbiting the black hole, the next best thing to seeing the hole itself.

Continue reading “Gas and Dust Seen Swirling Around our Galaxy’s Supermassive Black Hole”

Here’s What the First Images from the Event Horizon Might Look Like

Researchers using the Event Horizon Telescope hope to generate images like this of Sag. A's event horizon. Image Credit: EHT.

The largest object in our night sky—by far!—is invisible to us. The object is the Super-Massive Black Hole (SMBH) at the center of our Milky Way galaxy, called Sagittarius A. But soon we may have an image of Sagittarius A’s event horizon. And that image may pose a challenge to Einstein’s Theory of General Relativity.

Continue reading “Here’s What the First Images from the Event Horizon Might Look Like”

Dark Matter Isn’t Made From Black Holes

In February of 2016, scientists working for the Laser Interferometer Gravitational-Wave Observatory (LIGO) made history when they announced the first-ever detection of gravitational waves. Since that time, multiple detections have taken place and scientific collaborations between observatories  – like Advanced LIGO and Advanced Virgo – are allowing for unprecedented levels of sensitivity and data sharing.

This event not only confirmed a century-old prediction made by Einstein’s Theory of General Relativity, it also led to a revolution in astronomy. It also stoked the hopes of some scientists who believed that black holes could account for the Universe’s “missing mass”. Unfortunately, a new study by a team of UC Berkeley physicists has shown that black holes are not the long-sought-after source of Dark Matter.

Continue reading “Dark Matter Isn’t Made From Black Holes”

Evidence for Thousands of Black Holes Buzzing Around the Center of the Milky Way

Since the 1970s, astronomers have understood that a Supermassive Black Hole (SMBH) resides at the center of the Milky Way Galaxy. Located about 26,000 light-years from Earth between the Sagittarius and Scorpius constellations, this black hole has come to be known as Sagittarius A* (Sgr A*). Measuring 44 million km across, this object is roughly 4 million times as massive as our Sun and exerts a tremendous gravitational pull.

Since that time, astronomers have discovered that most massive galaxies have SMBHs at their core, which is what separates those that have an Active Galactic Nuclei (AGN) from those that don’t. But thanks to a recent survey conducted using NASA’s Chandra X-ray Observatory, astronomers have discovered evidence for hundreds or even thousands of black holes located near the center of the Milky Way Galaxy.

The study which described their findings was recently published in the journal Nature under the title “A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy“. The study was led by Chuck Hailey, the Pupin Professor of Physics and the Co-Director of the Columbia Astrophysics Laboratory (CAL) at Columbia University, and including members from the Instituto de Astrofísica at the Pontificia Universidad Católica de Chile and the Harvard-Smithsonian Center for Astrophysics.

The center of the Milky Way Galaxy, with X-ray binaries circled in red, other X-ray sources circled in yellow, and Sagittarius A* circled in blue at the center. Credit: NASA/CXC/Columbia University/C. Hailey et al.

Using Chandra data, the team searched for X-ray binaries containing black holes that were in the vicinity of Sgr A*. To recap, black holes are not detectable in visible light. However, black holes (or neutron stars) that are locked in close orbits with a star will pull material from their companions, which will then be accreted onto the black holes’ disks and heated up to millions of degrees.

This will result in the release of X-rays which can then be detected, hence why these systems are called “X-ray binaries”. Using Chandra data, the team sought out X-ray of sources that were located within roughly 12 light years of Sgr A*. They then selected sources with X-ray spectra similar to those of known X-ray binaries, which emit relatively large amounts of low-energy X-rays.

Using this method, they detected fourteen X-ray binaries within about three light years of Sgr A*, all of which contained stellar-mass black holes (between 5 and 30 times the mass of our Sun). Two of these sources had been identified by previous studies and were eliminated from the analysis, while the remaining twelve (circled in red in the image above) were newly-discovered.

Other sources which relatively large amounts of high energy X-rays (labeled in yellow) were believed to be binaries containing white dwarfs. Hailey and his colleagues concluded that the majority of the dozen X-ray binaries were likely to contain black holes, based on their variability and the fact that their X-ray emissions over the course of several years was different from what is expected from binaries containing neutron stars.

Artist”s impression of a black hole binary, consisting of a black hole siphoning material from its companion. Credit: ESO/L. Calçada

Given that only the brightest X-ray binaries containing black holes are likely to be detectable around Sgr A* (given its distance from Earth), Hailey and his colleagues concluded that this detection implies the existence of a much larger population. By their estimates, there could be at least 300 and as many as one thousand stellar-mass black holes present around Sgr A*.

These findings confirmed what theoretical studies on the dynamics of stars in galaxies have indicated in the past. According to these studies, a large population of stellar mass black holes (as many as 20,000) could drift inward over the course of millions of years and collect around an SMBH. However, the recent analysis conducted by Hailey and his colleagues was the first observational evidence of black holes congregating near Sgr A*.

Naturally, the authors acknowledge that there are other explanations for the X-ray emissions they detected. This includes the possibility that half of the dozen sources they observed are millisecond pulsars – very rapidly rotating neutron stars with strong magnetic fields. However, based on their observations, Hailey and his team strongly favor the black hole explanation.

In addition, a follow-up study conducted by Aleksey Generozov (et al.) of Columbia University – titled “An Overabundance of Black Hole X-Ray Binaries in the Galactic Center from Tidal Captures” – indicated that there could be as many as 10,000 to 40,000 black holes binaries at the center of our galaxy. According to this study, these binaries would be the result of companions being captured by black holes.

In February 2016, LIGO detected gravity waves for the first time. As this artist's illustration depicts, the gravitational waves were created by merging black holes. The third detection just announced was also created when two black holes merged. Credit: LIGO/A. Simonnet.
Artist’s impression of merging binary black holes. Credit: LIGO/A. Simonnet.

In addition to revealing much about the dynamics of stars in our galaxy, this study has implications for the emerging field of gravitational wave (GW) research. Essentially, by knowing how many black holes reside at the center of galaxies (which will periodically merge with one another), astronomers will be able to better predict how many gravitational wave events are associated with them.

From this, astronomers could create predictive models about when and how GW events are likely to happen, and well as discerning what role they may play in galactic evolution. And with next-generation instruments – like the James Webb Space Telescope (JWST) and the ESA’s Advanced Telescope for High Energy Astrophysics (ATHENA) – astronomers will be able to determine exactly how many black holes reside near the center of our galaxy.

 

 

Further Reading: NASA