Asteroid Bennu is Getting Some Official Names for its Surface Features

Late last summer, NASA and the International Astronomical Union’s Working Group for Planetary System Nomenclature (a.k.a WGPSN) approved the naming convention for features on Bennu, the asteroid currently being orbited and studied by the OSIRIS-Rex spacecraft. The naming theme chosen was “birds and bird-like creatures in mythology.”

The first twelve features thusly named have now been announced. But more importantly, some of these features will be instrumental in helping to guide OSIRIS-REx to the surface of the asteroid later this year.

Continue reading “Asteroid Bennu is Getting Some Official Names for its Surface Features”

Even Though it Was Observing an Asteroid, OSIRIS-REx Accidentally Spotted a Black Hole

While the OSIRIS-REx spacecraft was orbiting asteroid Bennu, one of the instruments on board happened to catch a glimpse of a black hole ‘out of the corner of its eye,’ so to speak.

While intently focusing on the asteroid, the Regolith X-Ray Imaging Spectrometer (REXIS) happened to catch the X-rays from a newly flaring stellar mass black hole.  While the flare occurred 30 thousand light years away, the flash in distant space was visible just off the limb of asteroid Bennu, in the edge of the instrument’s field of view.

Continue reading “Even Though it Was Observing an Asteroid, OSIRIS-REx Accidentally Spotted a Black Hole”

Why Are Particles Getting Ejected Off of Asteroid Bennu?

NASA’s OSIRIS-REx spacecraft arrived at asteroid Bennu in December 2018, and just one week later, it discovered something unusual about Bennu: the asteroid was ejecting particles into space.

The spacecraft’s navigation camera first spotted the particles, but scientists initially thought they were just stars in the background. After closer scrutiny, the OSIRIS-REx team realized they were particles of rock, and were concerned that they might pose a hazard.

Continue reading “Why Are Particles Getting Ejected Off of Asteroid Bennu?”

It’s Time to Decide. Where Should OSIRIS-REx Take a Sample from Bennu?

NASA’s OSIRIS-REx arrived at asteroid Bennu in December 2018. During the past year, it’s been imaging the surface of the asteroid extensively, looking for a spot to take a sample from. Though the spacecraft has multiple science objectives, and a suite of instruments to meet them, the sample return is the key objective.

Now, NASA has narrowed the choice down to four potential sampling locations on the surface of the asteroid.

Continue reading “It’s Time to Decide. Where Should OSIRIS-REx Take a Sample from Bennu?”

Asteroid Bennu has Already Thrown Material off into Space 11 Times Since OSIRIS-REx Arrived

On Dec. 31st, NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) rendezvoused with the asteroid 101955 Bennu. As part of an asteroid sample-return mission, NASA hopes that material from this near-Earth Asteroid (NEA) will reveal things about the history of the Solar System, the formation of its planets, and the origins of life on Earth.

Since the spacecraft established orbit around the asteroid, it has witnessed some interesting phenomena. This includes the first-ever close-up observations of particle plumes erupting from an asteroid’s surface. Since that time, the mission team has kept an eye out for these eruptions, which has allowed them to witness a total of 11 “ejection events” since the spacecraft first arrived.

Continue reading “Asteroid Bennu has Already Thrown Material off into Space 11 Times Since OSIRIS-REx Arrived”

Weekly Space Hangout: Jan 2, 2019- News Roundup

Hosts:
Fraser Cain (universetoday.com / @fcain)
Dr. Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Dr. Kimberly Cartier (KimberlyCartier.org / @AstroKimCartier )
Dr. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg & ChartYourWorld.org)

Announcements:
Want to support CosmoQuest? Here are specific ways you can help:
* Donate! (Streamlabs link) https://streamlabs.com/cosmoquestx
* Donate and challenge your friends to donate too! (Tiltify link) https://tiltify.com/+cosmoquest-supporters/hangoutathon2018
* Buy stuff from our Redbubble https://www.redbubble.com/people/cosmoquestx
* Help us find sponsors by sharing our program and fundraising efforts through your networks
* Become a Patreon of Astronomy Cast https://www.patreon.com/astronomycast
* Sponsor 365 Days of Astronomy http://bit.ly/sponsor365DoA
* A combination of the above!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

If you’d like to join Dr. Paul Sutter and Dr. Pamela Gay on their Cosmic Stories in the SouthWest Tour in August 2019, you can find the information at astrotours.co/southwest.

We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page – Please subscribe!

The Weekly Space Hangout is a production of CosmoQuest.

OSIRIS-REx has Finally Caught up with Asteroid Bennu. Let the Analysis and Sample Collection Commence!

The asteroid Bennu, as imaged by OSIRIS-REx from a distance of about 80 km. Image Credit: NASA/University of Arizona

NASA’s OSIRIS-REx spacecraft has reached its destination and is now in orbit around asteroid Bennu. The spacecraft travelled for over two years and covered more than 2 billion kms. It will spend a year in orbit, surveying the surface of the Potentially Hazardous Object (PHO) before settling on a location for the key phase of its mission: a sample return to Earth.

Continue reading “OSIRIS-REx has Finally Caught up with Asteroid Bennu. Let the Analysis and Sample Collection Commence!”

NASA’s OSIRIS-REx Captures Lovely Blue Marble during Gravity Assist Swing-by to Asteroid Bennu

A color composite image of Earth taken on Sept. 22, 2017 by the MapCam camera on NASA’s OSIRIS-REx spacecraft just hours after the spacecraft completed its Earth Gravity Assist at a range of approximately 106,000 miles (170,000 kilometers). Credit: NASA/Goddard/University of Arizona

KENNEDY SPACE CENTER, FL – NASA’s OSIRIS-REx asteroid mission captured a lovely ‘Blue Marble’ image of our Home Planet during last Fridays (Sept. 22) successful gravity assist swing-by sending the probe hurtling towards asteroid Bennu for a rendezvous next August on a round trip journey to snatch pristine soil samples.

The newly released color composite image of Earth was taken on Sept. 22 by the spacecrafts MapCam camera.

It was taken at a range of approximately 106,000 miles (170,000 kilometers), just a few hours after OSIRIS-REx completed its critical Earth Gravity Assist (EGA) maneuver.

“NASA’s asteroid sample return spacecraft successfully used Earth’s gravity on Friday, Sept. 22 to slingshot itself on a path toward the asteroid Bennu, for a rendezvous next August,” the agency confirmed after receiving the eagerly awaited telemetry.

OSIRIS-Rex, which stands for Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer, is NASA’s first ever asteroid sample return mission.

As it swung by Earth at 12:52 p.m. EDT on Sept. 22, OSIRIS-REx passed only 10,711 miles (17,237 km) above Antarctica, just south of Cape Horn, Chile.

The probe departed Earth by following a flight path that continued north over the Pacific Ocean and has already travelled 600 million miles (1 billion kilometers) since launching on Sept. 8, 2016.

OSIRIS-REx flight path over Earth’s surface during the Sept. 22, 2017 slingshot over Antarctica at 12:52 a.m. EDT targeting the probe to Asteroid Bennu in August 2018. Credits: NASA’s Goddard Space Flight Center/University of Arizona

The preplanned EGA maneuver provided the absolutely essential gravity assisted speed boost required for OSIRIS-Rex to gain enough velocity to complete its journey to the carbon rich asteroid Bennu and back.

The mission was only made possible by the slingshot which provided a velocity change to the spacecraft of 8,451 miles per hour (3.778 kilometers per second).

“The encounter with Earth is fundamental to our rendezvous with Bennu,” said Rich Burns, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in a statement.

“The total velocity change from Earth’s gravity far exceeds the total fuel load of the OSIRIS-REx propulsion system, so we are really leveraging our Earth flyby to make a massive change to the OSIRIS-REx trajectory, specifically changing the tilt of the orbit to match Bennu.”

The spacecraft conducted a post flyby science campaign by collecting images and science observations of Earth and the Moon that began four hours after closest approach in order to test and calibrate its onboard suite of five science instruments and help prepare them for OSIRIS-REx’s arrival at Bennu in late 2018.

NASA’s OSIRIS-REx spacecraft OTES spectrometer captured these infrared spectral curves during Earth Gravity Assist on Sept. 22 2017, hours after the spacecraft’s closest approach. Credit: NASA/Goddard/University of Arizona/Arizona State University

The MapCam camera Blue Marble image is the first one to be released by NASA and the science team.

The image is centered on the Pacific Ocean and shows several familiar landmasses, including Australia in the lower left, and Baja California and the southwestern United States in the upper right.

“The dark vertical streaks at the top of the image are caused by short exposure times (less than three milliseconds),” said the team.

“Short exposure times are required for imaging an object as bright as Earth, but are not anticipated for an object as dark as the asteroid Bennu, which the camera was designed to image.”

The instrument will gather additional data and measurements scanning the Earth and the Moon for three more days over the next two weeks.

“The opportunity to collect science data over the next two weeks provides the OSIRIS-REx mission team with an excellent opportunity to practice for operations at Bennu,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson.

“During the Earth flyby, the science and operations teams are co-located, performing daily activities together as they will during the asteroid encounter.”

A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT on September 8, 2016. Credit: Ken Kremer/kenkremer.com

The OSIRIS-Rex spacecraft originally departed Earth atop a United Launch Alliance Atlas V rocket under crystal clear skies on September 8, 2016 at 7:05 p.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station, Florida.

Everything with the launch and flyby went exactly according to plan for the daring mission boldly seeking to gather rocks and soil from carbon rich Bennu.

OSIRIS-Rex is equipped with an ingenious robotic arm named TAGSAM designed to collect at least a 60-gram (2.1-ounce) sample and bring it back to Earth in 2023 for study by scientists using the world’s most advanced research instruments.

View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA’s Kennedy Space Center. Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite NASA mission and launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Ken Kremer

NASA’s OSIRIS-REx spacecraft OVIRS spectrometer captured this visible and infrared spectral curve, which shows the amount of sunlight reflected from the Earth, after the spacecraft’s Earth Gravity Assist on Sept. 22, 2017. Credit: NASA/Goddard/University of Arizona