OSIRIS-REx Sends Home an Image of the Earth and Moon

On September 8th. 2016, NASA’s Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) launched from Earth to rendezvous with the asteroid 101955 Bennu. This mission will be the first American robotic spacecraft to rendezvous with an asteroid, which it will reach by December of 2018, and return samples to Earth for analysis (by September 24th, 2023).

Since that time, NASA has been keeping the public apprised of the mission’s progress, mainly by sending back images taken by the spacecraft. The latest image was one of the Earth and Moon, which the spacecraft took using its NavCam 1 imager on January 17th, 2018. As part of an engineering test, this image shows just how far the probe has ventured from Earth.

Image of the Earth-Moon system, taken by the OSIRIS-REx spacecraft on Jan. 17th 2018. Credit: NASA/Goddard/University of Arizona/Lockheed Martin

The image was taken when the spacecraft was at a distance of 63.6 million km (39.5 million mi) from the Earth and Moon. When the camera acquired the image, the spacecraft was moving at a speed of 8.5 km per second (19,000 mph) away from Earth. Earth can be seen in the center of the image as the brightest of the two spots while the smaller, dimmer Moon appears to the right.

Several constellations are also visible in the surrounding space, including the Pleiades cluster in the upper left corner. Hamal, the brightest star in Aries, is also visible in the upper right corner of the image. Meanwhile, the Earth-Moon system is nestled between the five stars that make up the head of Cetus the Whale.

This is merely the latest in a string of photographs that show how far OSIRIS-REx has ventured from Earth. On October 2nd, 2017, the probe’s MapCam instrument took a series of images of the Earth and Moon while the probe was at a distance of 5 million km (3 million mi) – about 13 times the distance between the Earth and the Moon. NASA then created a composite image to create a lovely view of the Earth-Moon system (see below).

The Earth-Moon system, as imaged by NASA’s OSIRIS-REx mission. Credit: NASA/OSIRIS-REx team and the University of Arizona

On September 22nd, 2017, the probe also snapped a “Blue Marble” image of Earth (seen below) while it was at a distance of just 170,000 km (106,000 mi). The image was captured just a few hours after OSIRIS-REx had completed its critical Earth Gravity Assist (EGA) maneuver, which slung it around the Earth and on its way towards the asteroid Bennu for its scheduled rendezvous in December of 2018.

On both of these occasions, the images were taken by the probe’s MapCam instrument, a medium-range camera designed to capture images of outgassing around Bennu and help map its surface in color. The NavCam 1 instrument, by contrast, is a grayscale imager that is part of Touch-And-Go Camera System (TAGCAMS) navigation camera suite.

A color composite image of Earth taken on Sept. 22, 2017 by the MapCam camera on NASA’s OSIRIS-REx spacecraft just hours after the spacecraft completed its Earth Gravity Assist at a range of approximately 106,000 miles (170,000 kilometers). Credit: NASA/Goddard/University of Arizona

The design, construction and testing of this instrument was carried out by Malin Space Science Systems, and Lockheed Martin is responsible for its operation. By the time OSIRIS-REx begins to approach asteroid Bennu in December of 2018, we can expect that the probes cameras will once again be busy.

However, by this time, they will be turned towards its destination. As it nears Bennu, its cameras will need to be calibrated yet again by snapping images of the asteroid on approach. And we, the public, can expect that more beautiful composite images will be shared as a result.

Further Reading: NASA

NASA’s OSIRIS-REx Captures Lovely Blue Marble during Gravity Assist Swing-by to Asteroid Bennu

A color composite image of Earth taken on Sept. 22, 2017 by the MapCam camera on NASA’s OSIRIS-REx spacecraft just hours after the spacecraft completed its Earth Gravity Assist at a range of approximately 106,000 miles (170,000 kilometers). Credit: NASA/Goddard/University of Arizona

KENNEDY SPACE CENTER, FL – NASA’s OSIRIS-REx asteroid mission captured a lovely ‘Blue Marble’ image of our Home Planet during last Fridays (Sept. 22) successful gravity assist swing-by sending the probe hurtling towards asteroid Bennu for a rendezvous next August on a round trip journey to snatch pristine soil samples.

The newly released color composite image of Earth was taken on Sept. 22 by the spacecrafts MapCam camera.

It was taken at a range of approximately 106,000 miles (170,000 kilometers), just a few hours after OSIRIS-REx completed its critical Earth Gravity Assist (EGA) maneuver.

“NASA’s asteroid sample return spacecraft successfully used Earth’s gravity on Friday, Sept. 22 to slingshot itself on a path toward the asteroid Bennu, for a rendezvous next August,” the agency confirmed after receiving the eagerly awaited telemetry.

OSIRIS-Rex, which stands for Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer, is NASA’s first ever asteroid sample return mission.

As it swung by Earth at 12:52 p.m. EDT on Sept. 22, OSIRIS-REx passed only 10,711 miles (17,237 km) above Antarctica, just south of Cape Horn, Chile.

The probe departed Earth by following a flight path that continued north over the Pacific Ocean and has already travelled 600 million miles (1 billion kilometers) since launching on Sept. 8, 2016.

OSIRIS-REx flight path over Earth’s surface during the Sept. 22, 2017 slingshot over Antarctica at 12:52 a.m. EDT targeting the probe to Asteroid Bennu in August 2018. Credits: NASA’s Goddard Space Flight Center/University of Arizona

The preplanned EGA maneuver provided the absolutely essential gravity assisted speed boost required for OSIRIS-Rex to gain enough velocity to complete its journey to the carbon rich asteroid Bennu and back.

The mission was only made possible by the slingshot which provided a velocity change to the spacecraft of 8,451 miles per hour (3.778 kilometers per second).

“The encounter with Earth is fundamental to our rendezvous with Bennu,” said Rich Burns, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in a statement.

“The total velocity change from Earth’s gravity far exceeds the total fuel load of the OSIRIS-REx propulsion system, so we are really leveraging our Earth flyby to make a massive change to the OSIRIS-REx trajectory, specifically changing the tilt of the orbit to match Bennu.”

The spacecraft conducted a post flyby science campaign by collecting images and science observations of Earth and the Moon that began four hours after closest approach in order to test and calibrate its onboard suite of five science instruments and help prepare them for OSIRIS-REx’s arrival at Bennu in late 2018.

NASA’s OSIRIS-REx spacecraft OTES spectrometer captured these infrared spectral curves during Earth Gravity Assist on Sept. 22 2017, hours after the spacecraft’s closest approach. Credit: NASA/Goddard/University of Arizona/Arizona State University

The MapCam camera Blue Marble image is the first one to be released by NASA and the science team.

The image is centered on the Pacific Ocean and shows several familiar landmasses, including Australia in the lower left, and Baja California and the southwestern United States in the upper right.

“The dark vertical streaks at the top of the image are caused by short exposure times (less than three milliseconds),” said the team.

“Short exposure times are required for imaging an object as bright as Earth, but are not anticipated for an object as dark as the asteroid Bennu, which the camera was designed to image.”

The instrument will gather additional data and measurements scanning the Earth and the Moon for three more days over the next two weeks.

“The opportunity to collect science data over the next two weeks provides the OSIRIS-REx mission team with an excellent opportunity to practice for operations at Bennu,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson.

“During the Earth flyby, the science and operations teams are co-located, performing daily activities together as they will during the asteroid encounter.”

A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT on September 8, 2016. Credit: Ken Kremer/kenkremer.com

The OSIRIS-Rex spacecraft originally departed Earth atop a United Launch Alliance Atlas V rocket under crystal clear skies on September 8, 2016 at 7:05 p.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station, Florida.

Everything with the launch and flyby went exactly according to plan for the daring mission boldly seeking to gather rocks and soil from carbon rich Bennu.

OSIRIS-Rex is equipped with an ingenious robotic arm named TAGSAM designed to collect at least a 60-gram (2.1-ounce) sample and bring it back to Earth in 2023 for study by scientists using the world’s most advanced research instruments.

View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA’s Kennedy Space Center. Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite NASA mission and launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Ken Kremer

NASA’s OSIRIS-REx spacecraft OVIRS spectrometer captured this visible and infrared spectral curve, which shows the amount of sunlight reflected from the Earth, after the spacecraft’s Earth Gravity Assist on Sept. 22, 2017. Credit: NASA/Goddard/University of Arizona

NASA’s OSIRIS-REx Asteroid Sampling Probe Completes Instrument Install/Assembly, Enters ‘Test Drive’ Phase

OSIRIS-Rex, the first American spacecraft ever aimed at snatching pristine samples from the surface of an asteroid and returning them to Earth for exquisite analysis by researchers world-wide with the most advanced science instruments has successfully completed its assembly phase and moved into the “test drive” phase – just ten months before blastoff, following installation of all its science instruments at Lockheed Martin Space Systems facilities, near Denver, Colorado.

The launch window for OSIRIS-REx opens next fall on September 3, 2016 on a seven-year journey to asteroid Bennu and back. Bennu is a carbon-rich asteroid. OSIRIS-Rex will eventually return the largest sample from space since the American and Soviet Union’s moon landing missions of the 1970s.

The science payload installation was recently completed with attachment of the vehicles three camera instrument suite of cameras and spectrometers known as OCAMS (OSIRIS-REx Camera Suite), which was was designed and built by the University of Arizona’s Lunar and Planetary Laboratory.

OCAMS trio of instruments, PolyCam, MapCam and SamCam, will survey and globally map the surface of Bennu up close at a distance ranging from approximately 5 km to 0.7 km.

“PolyCam, MapCam and SamCam will be our mission’s eyes at Bennu,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, in a statement.

“OCAMS will provide the imagery we need to complete our mission while the spacecraft is at the asteroid.”

“All in all it was flawless installation, with the three cameras and the control electronics making it on the spacecraft well in advance of when we originally planned these activities. In general, the OSIRIS-REx ATLO (assembly, test and launch operations) flow has gone smoothly,” said Lauretta in a blog update.

The University of Arizona’s camera suite, OCAMS, sits on a test bench that mimics its arrangement on the OSIRIS-REx spacecraft. The three cameras that compose the instrument – MapCam (left), PolyCam and SamCam – are the eyes of NASA’s OSIRIS-REx mission. They will map the asteroid Bennu, help choose a sample site, and ensure that the sample is correctly stowed on the spacecraft.  Credits: University of Arizona/Symeon Platts
The University of Arizona’s camera suite, OCAMS, sits on a test bench that mimics its arrangement on the OSIRIS-REx spacecraft. The three cameras that compose the instrument – MapCam (left), PolyCam and SamCam – are the eyes of NASA’s OSIRIS-REx mission. They will map the asteroid Bennu, help choose a sample site, and ensure that the sample is correctly stowed on the spacecraft. Credits: University of Arizona/Symeon Platts

For the next five months, NASA’s OSIRIS-REx which stands for Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer will undergo a rigorous regime of critical environmental testing to ensure the probe will survive the unforgiving extremes of vacuum, vibration and extreme temperatures it will experience during launch and throughout the life of its planned eight year mission.

The asteroid sampling spacecraft is tracking on budget and ahead of schedule.

“OSIRIS-REx is entering environmental testing on schedule, on budget and with schedule reserves,” said Mike Donnelly, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in a statement.

“This allows us to have flexibility if any concerns arise during final launch preparations.”

Bennu is a near-Earth asteroid and was selected for the sample return mission because it “could hold clues to the origin of the solar system and host organic molecules that may have seeded life on Earth,” says NASA.

The spacecraft is equipped with a suite of five science instruments to remotely study the 492 meter wide asteroid.

The instruments were all installed as planned on the spacecraft deck over the past few months so they can all be subjected to the environmental testing together with the spacecraft bus.

“This milestone marks the end of the design and assembly stage,” said Lauretta, in a statement.

“We now move on to test the entire flight system over the range of environmental conditions that will be experienced on the journey to Bennu and back. This phase is critical to mission success, and I am confident that we have built the right system for the job.”

The tests will “simulate the harsh environment of space, including acoustical, separation and deployment shock, vibration, and electromagnetic interference. The simulation concludes with a test in which the spacecraft and its instruments are placed in a vacuum chamber and cycled through the extreme hot and cold temperatures it will face during its journey to Bennu,” say NASA officials.

Video caption: Engineers at Lockheed Martin move the OSIRIS-REx spacecraft onto a rotation fixture. This fixture supports the full weight of the spacecraft and acts as a hinge, orienting the spacecraft at a 90 degree angle, which allows engineers to access the top of the spacecraft much more easily. Credits: Lockheed Martin Corporation

The testing is done to uncover any issues lurking prior next September’s planned liftoff.

“This is an exciting time for the program as we now have a completed spacecraft and the team gets to test drive it, in a sense, before we actually fly it to asteroid Bennu,” said Rich Kuhns, OSIRIS-REx program manager at Lockheed Martin Space Systems.

“The environmental test phase is an important time in the mission as it will reveal any issues with the spacecraft and instruments, while here on Earth, before we send it into deep space.”

After the testing is complete by next May, the spacecraft will ship from Lockheed Martin’s Denver facility to NASA’s Kennedy Space Center, where it will undergo final prelaunch preparations and transport to the launch pad at Cape Canaveral.

Artist concept of OSIRIS-REx, the first U.S. mission to return samples from an asteroid to Earth. Credit: NASA/Goddard
Artist concept of OSIRIS-REx, the first U.S. mission to return samples from an asteroid to Earth.
Credit: NASA/Goddard

OSIRIS-REx is scheduled for launch in September 2016 from Cape Canaveral Air Force Station in Florida aboard a United Launch Alliance Atlas V 411 rocket, which includes a 4-meter diameter payload fairing and one solid rocket motor. Only three Atlas V’s have been launched in this configuration.

“This is an exciting time,” says Lauretta.

The spacecraft will reach Bennu in 2018. OSIRIS-REx will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023 for study by researchers here with all the most sophisticated science instruments available.

Bennu is an unchanged remnant from the collapse of the solar nebula and birth of our solar system some 4.5 billion years ago, little altered over time.

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.

OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.

OSIRIS-REx logo
OSIRIS-REx logo

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

OSIRIS-REx Asteroid Sampler Enters Final Assembly

OSIRIS-Rex, NASA’s first ever spacecraft designed to collect and retrieve pristine samples of an asteroid for return to Earth has entered its final assembly phase.

Approximately 17 months from now, OSIRIS-REx is slated to launch in the fall of 2016 and visit asteroid Bennu, a carbon-rich asteroid.

Bennu is a near-Earth asteroid and was selected for the sample return mission because it “could hold clues to the origin of the solar system and host organic molecules that may have seeded life on Earth,” says NASA.

The spacecraft is equipped with a suite of five science instruments to remotely study the 492 meter meter wide asteroid.

Eventually it will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023 for study by researchers here with all the most sophisticated science instruments available.

The precious sample would land arrive at Utah’s Test and Training Range in a sample return canister similar to the one for the Stardust spacecraft.

The OSIRIS-REx – which stands for Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer – spacecraft passed a critical decision milestone on the road to launch and has been officially authorized by NASA to transition into this next mission phase.

The decision meeting to give the go ahead for final assembly was held at NASA Headquarters in Washington on March 30 and was chaired by NASA’s Science Mission Directorate, led by former astronaut John Grunsfeld who was the lead spacewalker on the final shuttle servicing mission to the Hubble Space Telescope in 2009.

“This is an exciting time for the OSIRIS-REx team,” said Dante Lauretta, principal investigator for OSIRIS-Rex at the University of Arizona, Tucson, in a stetement.

“After almost four years of intense design efforts, we are now proceeding with the start of flight system assembly. I am grateful for the hard work and team effort required to get us to this point.”

In a clean room facility near Denver, Lockheed Martin  technicians began assembling a NASA spacecraft that will collect samples of an asteroid for scientific study. Working toward a September 2016 launch, the OSIRIS-REx spacecraft will be the first U.S. mission to return samples from an asteroid back to Earth.  Credit: Lockheed Martin
In a clean room facility near Denver, Lockheed Martin technicians began assembling a NASA spacecraft that will collect samples of an asteroid for scientific study. Working toward a September 2016 launch, the OSIRIS-REx spacecraft will be the first U.S. mission to return samples from an asteroid back to Earth. Credit: Lockheed Martin

The transition to the next phase known as ATLO (assembly, test and launch operations) is critical for the program because it is when the spacecraft physically comes together, says Lockheed Martin, prime contractor for OSIRIS-REx. Lockheed is building OSIRIS-Rex in their Denver assembly facility.

“ATLO is a turning point in the progress of our mission. After almost four years of intense design efforts, we are now starting flight system assembly and integration of the science instruments,” noted Lauretta.

Over the next six months, technicians will install on the spacecraft structure its many subsystems, including avionics, power, telecomm, mechanisms, thermal systems, and guidance, navigation and control, according to NASA.

“Building a spacecraft that will bring back samples from an asteroid is a unique opportunity,” said Rich Kuhns, OSIRIS-REx program manager at Lockheed Martin Space Systems, in a statement.

“We can feel the momentum to launch building. We’re installing the electronics in the next few weeks and shortly after we’ll power-on the spacecraft for the first time.”

OSIRIS-REx is scheduled for launch in September 2016 from Cape Canaveral Air Force Station in Florida aboard a United Launch Alliance Atlas V 411 rocket, which includes a 4-meter diameter payload fairing and one solid rocket motor. Only three Atlas V’s have been launched in this configuration.

“In just over 500 days, we will begin our seven-year journey to Bennu and back. This is an exciting time,” said Lauretta.

The spacecraft will reach Bennu in 2018 and return a sample to Earth in 2023.

Bennu is an unchanged remnant from the collapse of the solar nebula and birth of our solar system some 4.5 billion years ago, little altered over time.

The Atlas V with MMS launches, as seen by this camera placed in the front of the launchpad. Copyright © Alex Polimeni
OSIRIS-REx will launch in 2016 on an Atlas V similar to this one lofting NASA’s MMS satellites on March 12, 2015, as seen by this camera placed in the front of the launchpad. Copyright © Alex Polimeni

Significant progress in spacecraft assembly has already been accomplished at Lockheed’s Denver manufacturing facility.

“The spacecraft structure has been integrated with the propellant tank and propulsion system and is ready to begin system integration in the Lockheed Martin highbay,” said Mike Donnelly, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in a statement.

“The payload suite of cameras and sensors is well into its environmental test phase and will be delivered later this summer/fall.”

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.

The most recent Atlas V launched NASA’s MMS quartet of Earth orbiting science probes on March 12, 2015.

OSIRIS-REx logo
OSIRIS-REx logo

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.

OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Artist's concept of the OSIRIS-REx spacecraft collecting a sample from asteroid 1999 RQ36. Credit: NASA
Artist’s concept of the OSIRIS-REx spacecraft collecting a sample from asteroid 1999 RQ36. Credit: NASA
Juno soars skyward to Jupiter on Aug. 5, 2011 from launch pad 41 at Cape Canaveral Air Force Station at 12:25 p.m. EDT. View from the VAB roof. Credit: Ken Kremer/kenkremer.com
OSIRIS-REx is the 3rd mission in NASA’s New Frontiers program. It follows NASA’s Juno orbiter seen here soaring skyward to Jupiter on Aug. 5, 2011 from launch pad 41 at Cape Canaveral Air Force Station at 12:25 p.m. EDT. View from the VAB roof. Credit: Ken Kremer/kenkremer.com

NASA Selects OSIRIS-REx as first US Asteroid Sampling Mission

[/caption]

NASA officials announced the selection of OSIRIS-Rex as the next US robotic planetary science mission and which will pave the way for an eventual manned mission to an asteroid. OSIRIS-Rex will be the first US mission to collect and return samples of an asteroid to Earth.

OSIRIS-Rex is planned for launch to the near Earth asteroid designated as 1999 RQ36 in September 2016 and will return up to four pounds of prisitine asteroidal material to Earth in 2023. The precious sample would land arrive at Utah’s Test and Training Range in a sample return canister similar to the one for the Stardust spacecraft.

“We are absolutely delighted to announce the selection of OSIRIS-Rex,” said Jim Green, director of NASA’s Planetary Science Division, at a briefing for reporters.

“This asteroid is a time capsule from the birth of our solar system and ushers in a new era of planetary exploration. The knowledge from the mission also will help us to develop methods to better track the orbits of asteroids.”

OSIRIS-Rex is the acronym for Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer.

The asteroid is an unchanged remnant from the collapse of the solar nebula and birth of our solar system some 4.5 billion years ago, little altered over time.

Asteroid 1999 RQ36 is likely rich in carbon, the key constituent of organic molecules and one of the building blocks of life. Organic molecules have been found in meteorite and comet samples, which indicates that some of life’s ingredients can be created in space.
The science team will determine if organics also are present on RQ36.

Osiris-REx collects pristine asteroid regolith

Asteroids like 1999 RQ36 may have seeded Earth billions of years ago with organic molecules that are the building blocks of life and perhaps eventually led to living organisms. Samples from the asteroids may help scientists unlock the mysteries of the origin of life on Earth.

Three years after launch, OSIRIS-Rex would arrive at Asteroid 1999 RQ36 in 2020 and study the 1900 foot wide space rock in detail for at least six months of comprehensive surface examinations with four science instruments.

The science team will also use the time – perhaps up to one year – to look for the optimal place to touch the surface and collect a sample of at least two ounces of surface material with a robotic arm.

“We are bringing back what we believe is the type of material that led to the building blocks of life, that led to us,” said Michael Drake, principal investigator of the OSIRIS-REx mission from the University of Arizona.

OSIRIS-REx releases a sample canister - similar to Stardust - for re-entry back into Earth's atmosphere and landing by parachute in Utah.
Credit: NASA/Goddard/University of Arizona
“We’re going for something rich in organics, which might have had something to do with life getting started.”

“OSIRIS-REx will explore our past and help determine our destiny,” said Drake. “It will return samples of pristine organic material that scientists think might have seeded the sterile early Earth with the building blocks that led to life. Such samples do not currently exist on Earth. OSIRIS-REx will also provide the knowledge that will guide humanity in deflecting any future asteroid that could collide with Earth, allowing humanity to avoid the fate of the dinosaurs.”

The small asteroid RQ36 has also attracted interest because there is a 1-in-1,800 chance of impacting the Earth in the year 2182.

Drake added that the team will carefully practice the sample collection before conducting the actual retrieval of a surface material of a mixture of soil and rocks with a pogo stick like device. He said it would be more like “kissing” the surface than a actual landing of the spacecraft.

The sampling device at the end of the robot arm looks like a car air filter. It will haul in the pristine regolith into the sample acquisition mechanism within 5 seconds in a “touch and go” maneuver as the spacecraft slowly descends at 0.1 m/sec. Up to 3 attempts are possible.

Check the sampling sequence video below.

Because the samples are expected to possess organic molecules, they will be subject to stringent planetary protection protocols. The OSIRIS-REx sample capsule will be stored for analysis at a special curation facility at NASA’s Johnson Space Center in Houston. By returning the asteroid samples to Earth, they can be studied by the most advanced science equipment available.

“I think we’ll get some much needed info on the composition and physical properties of asteroid surface material. I’m particularly interested in water content for future resource use. The photos should be spectacular,” said former Astronaut Tom Jones in exclusive comments for Universe Today.

“This is a critical step in meeting the objectives outlined by President Obama to extend our reach beyond low-Earth orbit and explore into deep space,” said NASA Administrator Charlie Bolden in a statement. “It’s robotic missions like these that will pave the way for future human space missions to an asteroid and other deep space destinations.”

When the mission is complete, the spacecraft is expected to have sufficient fuel reserves to be retargeted to a new destination according to Michael Drake.

OSIRIS-Rex is expected to cost $800 million according to Jim Green, minus the cost of the launch vehicle which he said has not yet been determined. This is the third mission in NASA’s New Frontiers Program following the Pluto-Charon mission and the Juno Jupiter Orbiter.

Lockheed Martin Space Systems in Denver is building the spacecraft. Overall mission management will be provided by NASA’s Goddard Space Flight Center in Greenbelt, Md.

OSIRIS-REx logo