OSIRIS-REx’s Final Haul: 121.6 Grams from Asteroid Bennu

These eight sample trays contain the final material from asteroid Bennu. The dust and rocks were poured into the trays from the top plate of the Touch-and-Go Sample Acquisition Mechanism (TAGSAM) head. 51.2 grams were collected from this pour, bringing the final mass of asteroid sample to 121.6 grams. Credit: NASA/Erika Blumenfeld & Joseph Aebersold

After several months of meticulous, careful work, NASA has the final total for their haul of asteroidal material from the OSIRIS-REx mission to Bennu. The highly successful mission successfully collected 121.6 grams, or almost 4.3 ounces, of rock and dust. It won’t be long before scientists get their hands on these samples and start analyzing them.

Continue reading “OSIRIS-REx’s Final Haul: 121.6 Grams from Asteroid Bennu”

Finally, Let’s Look at the Asteroid Treasure Returned to Earth by OSIRIS-REx

A top-down view of the OSIRIS-REx Touch-and-Go-Sample-Acquisition-Mechanism (TAGSAM) head with the lid removed, revealing the remainder of the asteroid sample inside. Photo: NASA/Erika Blumenfeld & Joseph Aebersold

NASA’s OSIRIS-REx delivered its precious cargo to Earth on September 24th, 2023. The sample from asteroid Bennu is contained inside the spacecraft’s sampling head, and it’s in safe hands at NASA’s Johnson Space Center in Houston. Two stubborn fasteners delayed the opening of the sampling head, but they’ve been removed, and now we can see inside.

What looks like unremarkable dirt is primordial asteroidal material that’s billions of years old, a natural treasure trove that eager scientists can’t wait to begin studying.

Continue reading “Finally, Let’s Look at the Asteroid Treasure Returned to Earth by OSIRIS-REx”

Engineers Finally Open OSIRIS-REx’s Sample Container

OSIRIS REx curation team attempting to remove the two stuck fasteners that are currently prohibiting the complete opening of the TAGSAM head. Photo Date: January 10, 2024. Location: Bldg. 31 - 2nd Floor - OSIRIS-REx lab. Photographer: Robert Markowitz

We have all been there, had that one stubborn jar of jam that we just can’t open. Maybe you grab a rubber band or run it under warm water and its an easy fix but just imagine when the jar is a module from a $1.16 billion interplanetary probe! That’s what happened to NASA engineers when they were trying to recover samples from the OSIRIS-REx module  when they discovered the clamps had cold welded shut! 

Continue reading “Engineers Finally Open OSIRIS-REx’s Sample Container”

OSIRIS-REx Returned Carbon and Water from Asteroid Bennu

This is the outside of the OSIRIS-REx sample collector. Sample material from asteroid Bennu is on the middle right. There's evidence of carbon and water in the initial analysis of Bennu's regolith. Most of the sample is sealed inside the capsule. Photo: NASA/Erika Blumenfeld & Joseph Aebersold

Carbon and water are so common on Earth that they’re barely worth mentioning. But not if you’re a scientist. They know that carbon and water are life-enabling chemicals and are also links to the larger cosmos.

Initial results from OSIRIS-REx’s Bennu samples show the presence of both in the asteroid’s regolith. Now, eager scientists will begin to piece together how Bennu’s carbon, water, and other molecules fit into the puzzle of the Earth, the Sun, and even the entire Solar System and beyond.

Continue reading “OSIRIS-REx Returned Carbon and Water from Asteroid Bennu”

NASA Opens the Lid on OSIRIS-REx's Sample Capsule

OSIRIS REx Asteroid Sample Return lid opening at Building 31 Astromaterials Curation Facility at the Johnson Space Center. Credit: NASA/Robert Markowitz

On Sunday, September 23rd, the Sample Retrieval Capsule (SRC) from NASA’s OSIRIS-REx mission landed in the Utah desert. Shortly thereafter, recovery teams arrived in helicopters, inspected and secured the samples, and flew them to the Utah Test and Training Range (UTTR). On Monday, the sample canister was transferred to the Astromaterials Research and Exploration Science Directorate (ARES) in Houston, Texas. Yesterday, on Tuesday, September 26th, NASA announced that the process of unsealing and removing the samples from the canister had begun with the removal of the initial lid.

Continue reading “NASA Opens the Lid on OSIRIS-REx's Sample Capsule”

OSIRIS-REx Would Have Sunk Deep into Asteroid Bennu if it Tried to Land

A pair of studies published in Science and Science Advances have helped identify that NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) spacecraft would have sunk into the asteroid Bennu had the spacecraft not fired its thrusters immediately after collecting samples from the surface of the small planetary body in October 2020. The respective studies examined the loosely packed exterior of Bennu, comparing its surface to stepping into a pit of plastic balls that people of all ages enjoy. The paper in Science was led by Dr. David Lauretta, Principal Investigator of OSIRIS-REx and a Regents Professor at the University of Arizona, and the paper in Science Advances was led by Dr. David Walsh, a member of the OSIRIS-REx team from the Southwest Research Institute in Boulder, Colorado.

Continue reading “OSIRIS-REx Would Have Sunk Deep into Asteroid Bennu if it Tried to Land”

OSIRIS-Rex got to Know Bennu Really Well. Apparently, There’s now a 1-in-1,750 Chance That it’ll hit Earth by 2300

This mosaic image of asteroid Bennu is composed of 12 images collected on Dec. 2, 2018, by the OSIRIS-REx spacecraft's PolyCam instrument from a range of 15 miles (24 kilometers). Credit: NASA/Goddard/University of Arizona

Asteroid Bennu is one of the two most hazardous known asteroids in our Solar System. Luckily, the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) spacecraft orbited Bennu for more than two years and gathered data that has allowed scientists to better understand the asteroid’s future orbit, trajectory and Earth-impact probability, and even rule out some future impact possibilities.

In the most precise calculations of an asteroid’s trajectory ever made, researchers determined Bennu’s total impact probability through the year 2300 is really small — about 1 in 1,750 (or 0.057%). The team’s paper says the asteroid will make a close approach to Earth in 2135, where Bennu will pose no danger at that time. But Earth’s gravity will alter the asteroid’s path, and the team identifies Sept. 24, 2182 as the most significant single date in terms of a potential impact, with an impact probability of 1 in 2,700 (or about 0.037%).

“The impact probability went up just a little bit, but it’s not a significant change,” said Davide Farnocchia, lead author of the paper, and scientist at the Center for Near Earth Object Studies at NASA’s Jet Propulsion Laboratory, speaking at a press briefing this week. Farnocchia added that means there is a 99.94% probability that Bennu is not on an impact trajectory.

“So, there is no particular reason for concern,” he said. “We have time to keep tracking the asteroid and eventually come to a final answer.”

101955 Bennu was discovered in 1999 by the Lincoln Near-Earth Asteroid Research Team. Since its discovery, Bennu has been extensively tracked with 580 ground-based optical astrometric observations. The asteroid made three relatively close passes of Earth in 1999, 2005, and 2011, during which the Arecibo and Goldstone radar stations collected a wealth of data about Bennu’s motion.

OSIRIS-REx discovered particles being ejected from asteroid Bennu shortly after arriving at the asteroid. Image Credit: NASA/Goddard/University of Arizona/Lockheed Martin

But OSIRIS-REx’s two-year reconnaissance and sample collection has provided crucial data about the 500-meter-wide asteroid, including some surprises. Scientists expected Bennu’s surface to be smooth and sandy, but the first images from OSIRIS-REx revealed a rugged boulder-field, littered with large rocks and loose gravel. The team also expected the asteroid to be geologically quiet, but just six days after arriving in orbit, the spacecraft observed the asteroid ejecting bits of rock, due to rocks on the asteroid cracking because of the day-night heat cycle. We also learned that Bennu has pieces of Vesta on it. The spacecraft also scooped up a sample of rock and dust from the asteroid’s surface in October of 2020, which it will deliver to Earth on Sept. 24, 2023, for further scientific investigation.

But OSIRIS-REx’s precise observations of Bennu’s motions and trajectory allowed for the best estimate yet of the asteroid’s future path.

“The OSIRIS-REx mission has provided exquisitely precise data on Bennu’s position and motion through space to a level never captured before on any asteroid,” said Lindley Johnson, planetary defense officer at NASA’s Planetary Defense Coordination Office at NASA.

The researchers took into account all kinds of small influences, including the tiny gravitational pull of more than 300 other asteroids, and the drag caused by interplanetary dust. They even checked to see if OSIRIS-REx pushed the asteroid off course when the spacecraft briefly touched its rocky surface with its Touch-And-Go (TAG) sample collection maneuver. But that event had a negligible effect, as expected.

The researchers especially focused on a phenomenon called the Yarkovsky effect, where an object in space would, over long periods of time, be noticeably nudged in its orbit by the slight push created when it absorbs sunlight and then re-emits that energy as heat. Over short timeframes, this thrust is minuscule, but over long periods, the effect on the asteroid’s position builds up and can play a significant role in changing an asteroid’s path.

“The Yarkovsky effect will act on all asteroids of all sizes, and while it has been measured for a small fraction of the asteroid population from afar, OSIRIS-REx gave us the first opportunity to measure it in detail as Bennu travelled around the Sun,” said Steve Chesley, senior research scientist at JPL and study co-investigator, in a press release. “The effect on Bennu is equivalent to the weight of three grapes constantly acting on the asteroid – tiny, yes, but significant when determining Bennu’s future impact chances over the decades and centuries to come.”

A diagram showing OSIRIS-REx’s sampling maneuver on October 20th, 2020. Image Credit: NASA/GSFC/UA

They also were able to better determine how the asteroid’s orbit will evolve over time and whether it will pass through a “gravitational keyhole” during its 2135 close approach with Earth. These keyholes are areas in space that would set Bennu on a path toward a future impact with Earth if the asteroid were to pass through them at certain times, due to the effect of Earth’s gravitational pull.

The team wrote in their paper that “compared to the information available before the OSIRIS-REx mission, the knowledge of the circumstances of the scattering Earth encounter that will occur in 2135 improves by a factor of 20, thus allowing us to rule out many previously possible impact trajectories.”

“The orbital data from this mission helped us better appreciate Bennu’s impact chances over the next couple of centuries and our overall understanding of potentially hazardous asteroids – an incredible result,” said Dante Lauretta, OSIRIS-REx principal investigator and professor at the University of Arizona. “The spacecraft is now returning home, carrying a precious sample from this fascinating ancient object that will help us better understand not only the history of the solar system but also the role of sunlight in altering Bennu’s orbit since we will measure the asteroid’s thermal properties at unprecedented scales in laboratories on Earth.”

Further reading:
Paper published in Icarus
NASA press release

Even the Outside of Hayabusa 2’s Sample Capsule has Asteroid Debris on it

Hayabusa 2 artwork
An artist's conception shows Hayabusa 2's sample return capsule making its atmospheric re-entry as its mothership flies above. (JAXA Illustration)

On December 5th, 2020, the Japanese Aerospace Exploration Agency’s (JAXA) Hayabusa 2 mission sent a sample capsule home containing debris from the near-Earth asteroid (NEA) 162173 Ryugu. This was the culmination of the probe’s first six years in space, which launched in Dec. 2014 and rendezvoused with Ryugu in June 2018. While the probe sets its sights on its new targets, scientists will be busy analyzing the Ryugu sample.

One thing they noticed immediately after opening the shell on Monday (Dec. 21st) was the black sandy dust that lined the capsule’s outer shell. According to a statement issued by JAXA, the black sand is material taken from the surface of Ryugu. Considering what’s inside sample chamber A, it appears that the amount of material obtained by Hayabusa 2 is more substantial than previously thought.

Continue reading “Even the Outside of Hayabusa 2’s Sample Capsule has Asteroid Debris on it”