NASA Wants to Learn to Live Off the Land on the Moon

Artist rendition of an In-situ Resource Utilization (ISRU) technology demonstration on the lunar surface. NASA is working with industry and academia to develop technologies for future production of fuel, water, or oxygen from local resources, thus advancing space exploration capabilities. (Credit: NASA)

In preparation for the upcoming Artemis missions to the lunar south pole, NASA recently solicited a Request for Information (RFI) from the lunar community to map out its future Lunar Infrastructure Foundational Technologies (LIFT-1) demonstration for developing In-situ Resource Utilization (ISRU) technologies as part of the agency’s ambitious Lunar Surface Innovation Initiative (LSII). The primary goal of LIFT-1, which is being driven by NASA’s Space Technology Mission Directorate (STMD), is to advance ISRU technologies for extracting oxygen from the lunar regolith, including manufacturing, harnessing, and storing the extracted oxygen for use by future astronauts on the lunar surface. Proposals for LIFT-1 became available to be submitted via NSPIRES on November 6, 2023, with a deadline of December 18, 2023.

Continue reading “NASA Wants to Learn to Live Off the Land on the Moon”

We Don't Know Enough About the Biomedical Challenges of Deep Space Exploration

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA

Although humans have flown to space for decades, the missions have primarily been in low-Earth orbit, with just a handful of journeys to the Moon. Future missions with the upcoming Artemis program aim to have humans living and working on the Moon, with the hopes of one day sending humans to Mars.

However, the environments of the Moon and deep space present additional health challenges to astronauts over low-Earth orbit (LEO), such as higher radiation, long-term exposure to reduced gravity and additional acceleration and deceleration forces. A new paper looks at the future of biomedicine in space, with a sobering takeaway: We currently don’t know enough about the biomedical challenges of exploring deep space to have an adequate plan to ensure astronaut health and safety for the Artemis program.

Continue reading “We Don't Know Enough About the Biomedical Challenges of Deep Space Exploration”

SpaceX Test Fires a Raptor Engine, Simulating a Lunar Landing

A Raptor Vacuum engine was successfully cold-started during a test in August 2023. Via SpaceX.

When NASA astronauts return to the surface of the Moon in the Artemis III mission, the plan is to use a modified SpaceX Starship as their lunar lander. NASA announced last week that SpaceX has now demonstrated an important capability of the vacuum-optimized Raptor engine that will be used for the lander: an extreme cold start.  

A test last month successfully confirmed the engine can be started in the frigid conditions of space, even when the vehicle has spent an extended time in space, where temperatures will drop lower than a shorter low-Earth orbit mission. The Raptor vacuum engine was chilled to mimic conditions after a long coast period in space, and then was successfully fired.  

Continue reading “SpaceX Test Fires a Raptor Engine, Simulating a Lunar Landing”

Low Gravity Simulator Lets You Jump Around in Lunar Gravity

A participant uses the MoLo facility in Milan, Italy which simulates lunar gravity. Credit: ESA.

When the Apollo astronauts landed on the Moon, they had to perform tasks in 1/6th of Earth’s gravity. At first, walking and working in this low gravity environment posed some challenges. However, the astronauts soon adapted and figured out that hopping like a bunny made it easier to get around.

The Artemis astronauts will also need to adapt to life on the Moon, and to that end, ESA has built a unique facility in a 17-meter (55 ft.) refurbished ventilation shaft.  

Continue reading “Low Gravity Simulator Lets You Jump Around in Lunar Gravity”

We’re Going to see at Least Five More SLS Rockets Launch in the Coming Years

March 2022 image of NASA's Space Launch System rocket’s core stage forward assembly boasting a 40-meter (130-foot) liquid hydrogen tank. (Credits: NASA/Eric Bordelon)

NASA’s continued goal of sending humans into deep space using its Space Launch System (SLS) recently took a giant leap as the world’s largest space agency finalized the SLS Stages Production and Evolution Contract worth $3.2 billion with The Boeing Company in Huntsville, Alabama. The purpose of the contract is for Boeing to keep building SLS core and upper stages for future Artemis missions to the Moon and beyond for at least five more SLS launches.

Continue reading “We’re Going to see at Least Five More SLS Rockets Launch in the Coming Years”

NASA Releases a Stunning New Supercut of the Artemis I Launch

NASA’s Space Launch System rocket carrying the Orion spacecraft launches on the Artemis I flight test, Wednesday, Nov. 16, 2022. Credit: NASA/Joel Kowsky

NASA just released a new supercut of high-resolution video from the Artemis I launch on November 16, 2022. Much of the footage is from cameras attached to the rocket itself, allowing everyone to ride along from engine ignition to the separation of the Orion capsule as it begins its journey to the Moon.

Continue reading “NASA Releases a Stunning New Supercut of the Artemis I Launch”

NASA Just Ordered Three More Orion Capsules, for Artemis VI, VII, and VIII

Orion is NASA’s deep space exploration spaceship that will carry astronauts from Earth to the Moon and bring them safely home. Credit: Lockheed Martin

Lockheed Martin announced that NASA has ordered three more Orion spacecraft for future Artemis missions. The new order includes capsules for the Artemis VI, VII and VII missions, which are expected to launch in the late 2020s to early 2030s. The three additional capsules are on order for $1.99 billion.

Continue reading “NASA Just Ordered Three More Orion Capsules, for Artemis VI, VII, and VIII”

Phew, NASA’s CAPSTONE is no Longer Tumbling in Space

Artist rendition of the CAPSTONE mission. Credit: Advanced Space.

Engineers with the trouble-plagued CAPSTONE mission to the Moon have made progress in stabilizing the spacecraft. A month ago, the microwave-oven-sized CAPSTONE (Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment) began tumbling and lost its orientation in space. But now, after weeks of painstaking and patient troubleshooting, team members successfully executed an operation to stop the spacecraft’s spin. NASA says this clears a major hurdle in returning the spacecraft to normal operations.

Continue reading “Phew, NASA’s CAPSTONE is no Longer Tumbling in Space”

NASA Chooses a Supplier to Build its Moonwalking Spacesuits

Axiom will provide the next generation astronaut spacesuits to NASA to support the Artemis lunar missions. Credit: Axiom

NASA announced they have chosen Axiom Space to build the spacesuits for the next astronauts to walk on the Moon. The spacesuits will be used on the Artemis III mission, which is planned to land the first woman and the first person of color on the lunar surface.

Axiom Space says the new spacesuits will provide astronauts with advanced capabilities for space exploration while providing NASA commercially developed human systems needed to access, live, and work in microgravity as well as on and around the Moon.

Continue reading “NASA Chooses a Supplier to Build its Moonwalking Spacesuits”

What is ISRU, and How Will it Help Human Space Exploration?

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA

As Artemis 1 prepares for its maiden launch with the goal of putting astronauts back on the Moon’s surface within the next few years, the next question is how will astronauts live and survive its surface? Will we constantly ferry all the necessary supplies such as water and food from Earth, or could astronauts learn to survive on their own? These are questions that a discipline known as ISRU hopes to answer both now and in the years to come. But what is ISRU, and how will it help advance human space exploration as we begin to slowly venture farther away from the only home we’ve ever known?

Continue reading “What is ISRU, and How Will it Help Human Space Exploration?”