Astronauts Can Now Watch 4K Streaming Video on the Station

A graphic representation of a laser communications relay between the International Space Station, the Laser Communications Relay Demonstration spacecraft, and the Earth. Credit: NASA/Dave Ryan

We take high definition streaming for granted in many parts of the world. Even now, as I type this article, I have the Martian streaming in high definition but until now astronauts on board the Space Station have had to accept low definition streaming. A team of researchers at NASA have developed and used a new system using an aircraft as a relay. A laser terminal was installed on a research aircraft and data was sent to a ground station. The signals were sent around the Earth and beamed to a relay satellite which then sent the signal on to the Space Station. What the astronauts will actually use it for is less likely to be streaming HD movies but will certainly be able to take advantage of the high bandwidth for science data and communications. 

Continue reading “Astronauts Can Now Watch 4K Streaming Video on the Station”

NASA Releases a New 3D Animation of the Lunar Gateway

A detailed 3D animation of NASA's Gateway space station, showcasing its modules and structural components from various angles against the backdrop of deep space. NASA/Bradley Reynolds, Alberto Bertolin

To get to the Moon, NASA is building a Lunar Gateway in orbit to facilitate easier access to the Moon. With construction beginning in 2028 as part of Artemis IV there will be an ongoing programme of enhancements and additions. NASA has now released a fabulous new 3D animation of the Lunar Gateway to showcase what the final Gateway will look like. It includes modules from partner nations and an Orion lunar landers dock to carry astronauts. 

Continue reading “NASA Releases a New 3D Animation of the Lunar Gateway”

A New Way to Make Precise Maps of the Lunar Surface

Lunar surface

There was a time when maps of the Moon were created from telescopic observations and drawings. Indeed Sir Patrick Moore created maps of the Moon that were used during the historic Apollo landings. Now researchers have enhanced a technique to create accurate maps from existing satellite images. Their approach uses a technique called ‘shape-from-shading’ and involves analyzing shadows to estimate the features and shape of the terrain. Future lunar missions will be able to use the maps to identify hazards on the surface making them far safer. 

Continue reading “A New Way to Make Precise Maps of the Lunar Surface”

Lighting Up the Moon’s Permanently Shadowed Craters

This illustration shows a solar reflector on a crater rim could deliver solar energy where it's needed in the bottom of permanently shadowed polar craters on the Moon. Image Credit: Texas A&M Engineering

The Moon’s polar regions are home to permanently shadowed craters. In those craters is ancient ice, and establishing a presence on the Moon means those water ice deposits are a valuable resource. Astronauts will likely use solar energy to work in these craters and harvest water, but the Sun never shines there.

What’s the solution? According to one team of researchers, a solar collector perched on the crater’s rim.

Continue reading “Lighting Up the Moon’s Permanently Shadowed Craters”

Lunar Explorers Could Run to Create Artificial Gravity for Themselves

A close-up view of astronaut Buzz Aldrin's bootprint in the lunar soil, photographed with the 70mm lunar surface camera during Apollo 11's sojourn on the moon. There'll soon be more boots on the lunar ground, and the astronauts wearing those boots need a way to manage the Moon's low gravity and its health effects. Image by NASA

Few things in life are certain. But it seems highly probable that people will explore the lunar surface over the next decade or so, staying there for weeks, perhaps months, at a time. That fact bumps up against something we are certain about. When human beings spend time in low-gravity environments, it takes a toll on their bodies.

What can be done?

Continue reading “Lunar Explorers Could Run to Create Artificial Gravity for Themselves”

Start Your Engines: NASA Picks 3 Teams to Work on Lunar Terrain Vehicle

Illustration: NASA's Lunar Terrain Vehicle concept
An artist's conception shows NASA's generic concept for the Lunar Terrain Vehicle. (NASA Illustration)

Some of the biggest names in aerospace — and the automotive industry — will play roles in putting NASA astronauts in the driver’s seat for roving around on the moon.

The space agency today selected three teams to develop the capabilities for a lunar terrain vehicle, or LTV, which astronauts could use during Artemis missions to the moon starting with Artemis 5. That mission is currently scheduled for 2029, three years after the projected date for Artemis’ first crewed lunar landing.

The teams’ leading companies may not yet be household names outside the space community: Intuitive Machines, Lunar Outpost and Venturi Astrolab. But each of those ventures has more established companies as their teammates.

Continue reading “Start Your Engines: NASA Picks 3 Teams to Work on Lunar Terrain Vehicle”

NASA Continues Testing its New Lunar Spacesuits

A spacesuit tester exploring how manoeuvrable it is and how easy pieces of rock can be picked up.
An Axiom Space engineer wearing the AxEMU (Axiom Extravehicular Mobility Unit) spacesuit kneels to collect simulated lunar samples using a scoop during testing at NASA’s Johnson Space Center. Axiom Space

NASA’s Artemis mission objective is among other things, to get human beings back to the Moon. Much of the attention of late has been focussed on the rocket technology to get the astronauts there but as we progress from Artemis I to Artemis II – which aims to take a crew around the Moon and back before Artemis III lands them on the lunar surface – attention is shifting on the spacesuits the crew will wear. The new suits, built by Axiom Space are designed to provide the mobility and protection required on the surface and now, NASA has received samples and is testing them in simulated space environments. 

Continue reading “NASA Continues Testing its New Lunar Spacesuits”

This is How Astronauts Would Escape from the Artemis II Launch Pad

KSC Emergency Escape Baskets

Space exploration is a tricky and at times, dangerous business. The safety of the crews is of paramount importance and escape technology is always factored into spacecraft design. Whilst Artemis I did not require such provisions when it launched Artemis II with astronauts on board is being prepared with a ski-lift style escape system to take them far away from the launch pad. 

Continue reading “This is How Astronauts Would Escape from the Artemis II Launch Pad”

NASA is Pushing Back its Moon Landings to 2026

I wasn’t around for the Apollo program that took human beings to the Moon. I would have love to have seen it all unfold though. With NASAs Artemis program the opportunity will soon be with us again to watch humans set foot on another world, just not for the first time. Alas NASA announced on Tuesday that the Moon landings which form part of Artemis 3, have been pushed back one year to 2026. 

Continue reading “NASA is Pushing Back its Moon Landings to 2026”

Plants Could Grow in Lunar Regolith Using Bacteria

Plants grown in a volcanic ash lunar simulant (left) compared with those grown in the lunar soil (right) Credit: UF/IFAS/Tyler Jones

In the next decade, NASA, China, and their international and commercial partners plan to establish habitats on the Moon. Through the Artemis Program, NASA will deploy the orbiting Lunar Gateway and the Artemis Base Camp on the lunar surface. Meanwhile, China (and its partner Roscosmos) will deploy the International Lunar Research Station (ILRS), consisting of an orbital and surface element. The creation of this infrastructure will enable a “sustained program of lunar exploration and development” that could lead to a permanent human presence there.

To ensure that humans can work and live sustainably beyond Earth, astronauts and crews will need to be able to harvest local resources to see to their needs – in-situ resource utilization (ISRU). This includes using lunar water ice and regolith to grow plants, providing astronauts with food and an additional source of oxygen and biomass. To test the potential for growing plants on the Moon, a Chinese research team conducted a series of experiments where they grew tobacco plants in simulated lunar soil with the help of bacteria.

Continue reading “Plants Could Grow in Lunar Regolith Using Bacteria”