Weekly Space Hangout – Nov. 22, 2017: Andy Weir and ARTEMIS

Hosts:
Fraser Cain (universetoday.com / @fcain)
Dr. Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Dr. Kimberly Cartier (KimberlyCartier.org / @AstroKimCartier )
Dr. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg ChartYourWorld.org)

Special Guests:
This week, we are SUPER excited to welcome author Andy Weir (The Martian), back to the show to chat with us about his new book, Artemis. Viewers who have seen Andy’s first appearance on our show on January 9, 2015, will remember just how awesome he is as a guest – and why we can’t wait to catch up with him this week.

Andy began his career as a software engineer but wrote science fiction stories in his spare time. His novel, THE MARTIAN, was a blockbuster success which has allowed him to pursue his writing full-time. He is a lifelong space nerd and a devoted hobbyist of subjects such as relativistic physics, orbital mechanics, and the history of manned spaceflight.

You can learn more about Andy and his books on his website (http://andyweirauthor.com)!

Announcements:
The WSH Crew is doing another book giveaway – this time in conjunction with Dean Regas‘ joining us again on November 29th in a pre-recorded interview. Dean’s new book, “100 Things to See in the Night Sky” hits the stores on November 28th, but we are giving our viewers a chance to win one of two copies of Dean’s book! (Note: telescope not included!)

To enter for a chance to win, send an email to [email protected] with the Subject ‘100 Things’. Be sure to include your name and email address in the body of your message so that we can contact our winners afterward.

To be eligible, your entry must be postmarked no later than 11:59:59 PM EST on Monday, November 27, 2017. Two winners will be selected at random from all eligible entries live on the show, by Fraser, on Wednesday, November 29th. No purchase is necessary. You do not need to be watching the show live to win. Contest is open to all viewers worldwide. Limit: One entry per person – duplicate entries will be ignored.

On a side note, THIS awesomeness based on Dean’s FIRST book is now also available:
» 365 Facts from Space! 2018 Daily Calendar

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page – Please subscribe!

New Camera Aboard APEX Gets First Light

And the “Cat’s Paw” was waiting to strike! In this exceptionally detailed image of star-forming region NGC 6334 we can get a sense of just how important new instrumentation can be. In this case it’s a new camera called ArTeMiS and it has just been installed on a 12-meter diameter telescope located high in the Atacama Desert. The Atacama Pathfinder Experiment – or APEX for short – operates at millimeter and submillimeter wavelengths, providing us with observations ranging between radio wavelengths and infrared light. These images give astronomers powerful new data to help them further understand the construction of the Universe.

Exactly what is ArTeMiS? The camera provides wide field views at submillimeter wavelengths. When added to APEX’s arsenal, it will substantially increase the amount of details a particular object has to offer. It has a detector array similar to a CCD camera – a new technology which will enable it to create wide-field maps of target areas with a greater amount of speed and a larger amount of pixels.

Like almost all new telescope projects, both personal and professional, the APEX team met up with “first light” problems. Although the ArTeMiS Camera was ready to go, the weather simply wouldn’t cooperate. According to the news release, very heavy snow on the Chajnantor Plateau had almost buried the building in which the scope operations are housed! However, the team was determined. Using a makeshift road and dodging snow drifts, the team and the staff at the ALMA Operations Support Facility and APEX somehow managed to get the camera to its location safely. Undaunted, they installed the ArTeMiS camera, worked the cryostat into position and locked the instrumentation down in its final position.

However, digging their way out of the snow wasn’t all the team had to contend with. To get ArTeMis on-line, they then had to wait for very dry weather since submillimeter wavelengths of light are highly absorbed by atmospheric moisture. Do good things come to those who wait? You bet. When the “magic moment” arrived, the APEX team was ready and the initial test observations were a resounding success. ArTeMiS quickly became the focus tool for a variety of scientific projects and commissioned observations. One of these projects was to image star-forming region NGC 6334 – the Cat’s Paw Nebula – in the southern constellation of Scorpius. Thanks to the new technology, the ArTeMiS image shows a superior amount of detail over earlier photographic observations taken with APEX.

What’s next for ArTeMiS? Now that the camera has been tested, it will be returned to Saclay in France to have even more detectors installed. According to the researchers: ” The whole team is already very excited by the results from these initial observations, which are a wonderful reward for many years of hard work and could not have been achieved without the help and support of the APEX staff.”

Original Story Source: ESO Public News Release.

ARTEMIS Spacecraft Curlicuing Their Way To Lunar Orbit

[/caption]

From a Goddard Space Flight Center Press Release:

They’ve almost arrived.

It took one and a half years, over 90 orbit maneuvers, and – wonderfully – many gravitational boosts and only the barest bit of fuel to move two spacecraft from their orbit around Earth to their new home around the Moon.

Along their travels, the spacecraft have been through orbits never before attempted and made lovely curlicue leaps from one orbit to the next. This summer, the two ARTEMIS spacecraft — which began their lives as part of the five-craft THEMIS mission studying Earth’s aurora – will begin to orbit the moon instead. THEMIS is an acronym for the Time History of Events and Macroscale Interaction during Substorms spacecraft.

Even with NASA’s decades of orbital mechanics experience, this journey was no easy feat. The trip required several maneuvers never before attempted, including several months when each craft moved in a kidney-shaped path on each side of the moon around, well, nothing but a gravitational point in space marked by no physical planet or object.

“No one has ever tried this orbit before, it’s an Earth-Moon libration orbit,” says David Folta a flight dynamics engineer at NASA’s Goddard Space Flight Center in Greenbelt, Md. “It’s a very unstable orbit that requires daily attention and constant adjustments.”

The journey for ARTEMIS — short for Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun — began in 2009, after THEMIS had completed some two years of science data collection on the magnetic environment around Earth, the aurora, and how these are affected by the sun.

The spacecraft are solar-powered, but orbits for the two outermost THEMIS spacecraft had slipped over time and were going to be subjected to regular eight-hour periods of darkness. These spacecraft could withstand up to three hours without sunlight, but this much darkness would soon leave the batteries completely discharged.

Teams at UC-Berkeley and Goddard handled the day-to-day control of the THEMIS spacecraft. The Principal Investigator for the mission, Vassilis Angelopoulos of UCLA talked to the teams about moving the two spacecraft to the moon to study the magnetic environment there. But quick models of a conventional boost technique showed that all the remaining fuel would be used simply in transit. There wouldn’t be enough left over for the fuel-hungry process of adjusting direction and speed to actually begin circling the moon.

So Angelopoulos pulled together a new, more complex multi-year-long orbit change plan. The move would rely predominantly on gravity assists from the moon and Earth to move the spacecraft into place. He brought his idea to two engineers who had been involved with launching THEMIS in the first place: David Folta and another flight engineer at Goddard, Mark Woodard. The pair used their own models to validate this new design, and the plan was on.

First step: increase the size of the orbits. The original Earth-centric orbits barely reached half way to the moon. By using small amounts of fuel to adjust speed and direction at precise moments in the orbit, the spacecraft were catapulted farther and farther out into space. It took five such adjustments for ARTEMIS P1 and 27 for ARTEMIS P2.

Next step: make the jump from Earth orbit to the tricky kidney-shaped “Lissajous” orbit, circling what’s known as a Lagrangian point on each side of the moon. These points are the places where the forces of gravity between Earth and the moon balance each other – the point does not actually offer a physical entity to circle around. ARTEMIS P1 made the leap – in a beautiful arc under and around the moon — to the Lagrangian point on the far side of the moon on August 25, 2010. The second craft made the jump to the near side of the moon on October 22. This transfer required a complex series of maneuvers including lunar gravity assists, Earth gravity assists, and deep space maneuvers. The combination of these maneuvers was needed not only to arrive at the correct spot near the moon but also at the correct time and speed.

Using a series of Earth and moon gravity assists – and only the barest bit of fuel – the ARTEMIS spacecraft entered into orbit around the moon’s Lagrangian points in the winter of 2010. Credit: NASA Goddard Space Flight Center/Scientific Visualization Studio

History was made. Numerous satellites orbit Lagrangian points between Earth and the Sun but, while this orbit had been studied extensively, it had never before been attempted.

Not only was this an engineering feat in and of itself, but the spacecraft were now in an ideal spot to study magnetism some distance from the moon. In this position, they could spot how the solar wind – made up of ionized gas known as plasma — flows past the Moon and tries to fill in the vacuum on the other side. A task made complicated since the plasma is forced by the magnetic fields to travel along certain paths.

“It’s a veritable zoo of plasma phenomena,” says David Sibeck, the project manager for THEMIS and ARTEMIS at Goddard. “The Moon carves out a cavity in the solar wind, and then we get to watch how that fills in. It’s anything but boring. There’s microphysics and particle physics and wave particle interaction and boundaries and layers. All things we haven’t had a chance to study before in the plasma.”

Life for the flight engineers was anything but boring too. Keeping something in orbit around a spot that has little to mark it except for the balance of gravity is no simple task. The spacecraft required regular corrections to keep it on track and Folta and Woodard watched it daily.

“We would get updated orbit information around 9 a.m. every day,” says Woodard. “We’d run that through our software and get an estimate of what our next maneuver should be. We’d go back and forth with Berkeley and together we’d validate a maneuver until we knew it was going to work and keep us flying for another week.”

The team learned from experience. Slight adjustments often had bigger consequences than expected. They eventually found the optimal places where corrections seemed to require less subsequent fine-tuning. These sweet spots came whenever the spacecraft crossed an imaginary line joining Earth and the Moon, though nothing in theories had predicted such a thing.

The daily vigilance turned out to be crucial. On October 14, the P1 spacecraft orbit and attitude changed unexpectedly. The first thought was that the tracking system might have failed, but that didn’t seem to be the problem. However, the ARTEMIS team also noticed that the whole craft had begun to spin about 0.001 revolutions per minute faster. One of the instruments that measures electric fields also stopped working. Best guess? The sphere at the end of that instrument’s 82-foot boom had broken off – perhaps because it was struck by something. That sphere was just three ounces on a spacecraft that weighed nearly 190 pounds — but it adjusted ARTEMIS P1’s speed enough that had they caught the anomaly even a few days later they would have had to waste a prohibitive amount of fuel to get back on course.

An artist's concept of the ARTEMIS spacecraft in orbit around the Moon. Credit: NASA

As it is, ARTEMIS will make it to the moon with even more fuel than originally estimated. There will be enough fuel for orbit corrections for seven to 10 years and then enough left over to bring the two craft down to the moon.

“We are thrilled with the work of the mission planners,” says Sibeck. “They are going to get us much closer to the moon than we could have hoped. That’s crucial for providing high quality data about the moon’s interior, its surface composition, and whether there are pockets of magnetism there.”

On January 9, 2011, ARTEMIS P1 jumped over the moon and joined ARTEMIS P2 on the side of the Moon closest to Earth. Now the last steps are about to begin.

On June 27, P1 will spiral in toward the moon and enter lunar orbit. On July 17, P2 will follow. P2 will travel in the same direction with the Moon, or in prograde; P1 will travel in the opposite direction, in retrograde.

“We’ve been monitoring ARTEMIS every day and developing maneuvers every week. It’s been a challenge, but we’ve uncovered some great things,” says Folta, who will now focus his attention on other NASA flights such as the MAVEN mission to Mars that is scheduled to launch in 2013. “But soon we’ll be done with this final maneuvering and, well, we’ll be back to just being ARTEMIS consultants.”

See additional ARTEMIS imagery and video at this link.

Written by Karen C. Fox at GSFC.

Earth Orbiting Satellites Maneuvered to Now Study the Moon

In another case of NASA reusing and recycling spacecraft, two of the five THEMIS spacecraft — which were studying the cause of geomagnetic substorms here on Earth — have a new mission. They made some very unique and complex maneuvers to reach two different LaGrange Points, and will turn their focus on the Moon. Particularly, they will try to determine how the solar wind electrifies, alters and erodes the lunar surface. This is timely since the discovery last year of water across the surface of the Moon which may be created by the solar wind interacting with the lunar surface.

The original THEMIS mission (Time History of Events and Macroscale Interactions during Substorms) featured five satellites that have now successfully completed their 2 year mission. Because they are continuing to work perfectly, NASA is re-directing the outermost two spacecraft to special orbits at and around the Moon. This new mission, which is called ARTEMIS: Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun.

[/caption]

It took more than a year and nearly all remaining fuel aboard the satellites to get them to the L1 and L2 Lagrangian points, where one is located on the far side of the Moon, and the other on the Earth-facing side. ARTEMIS-P1 is the first spacecraft to navigate to and perform stationkeeping operations around the Earth-Moon L1 and L2 Lagrangian points.

On August 25, 2010, ARTEMIS-P1 reached the L2 Lagrange point on the far side of the Moon. Following close behind, ARTEMIS-P2 entered the opposite L1 Lagrange point on Oct. 22nd.

Recently, one of the spacecraft was hit by a meteoroid but still seems to be operating.

As the Moon orbits the Earth, it passes in and out of the Earth’s magnetic field and the million-mile per hour stream of solar wind particles. While in these regions, the two ARTEMIS spacecraft will seek evidence for turbulence, particle acceleration, and magnetic reconnection, three fundamental phenomena that control the nature of the solar wind’s interaction with the Earth’s magnetosphere.

By using their instruments and unique two-point vantage points, the spacecraft will study the vacuum the Moon carves out in the solar wind, and the processes that eventually fill this lunar wake. Nearer the Moon, they will observe the effects of surface electric fields, ions sputtered off the lunar surface, and determine the internal structure of the Moon from transient variations in its magnetic field induced by external changes.