NASA has Plans for More Cargo Deliveries to the Moon

Early conceptual renderings of cargo variants of human lunar landing systems from NASA’s providers SpaceX, left, and Blue Origin, right. Credit: SpaceX/Blue Origin

Through the Artemis Program, NASA hopes to lay the foundations for a program of “sustained lunar exploration and development.” This will include regular missions to the surface, the creation of infrastructure and habitats, and a long-term human presence. To facilitate this, NASA is teaming up with industry and international partners to develop Human Landing Systems (HLS) that can transport crews to and from the lunar surface and landers that can deliver payloads of equipment, vehicles, and supplies to the lunar surface.

In a recent statement, NASA indicated that it intends to award Blue Origin and SpaceX additional work under their existing contracts to develop landers that will deliver equipment and infrastructure to the lunar surface. NASA also plans to assign demonstration missions to these companies, in addition to design certification reviews, which will validate their concepts. This decision builds on NASA’s earlier request, made in 2023, that the two companies develop cargo versions of their HLS concepts, which are currently in development for the Artemis III, Artemis IV, and Artemis V missions.

Continue reading “NASA has Plans for More Cargo Deliveries to the Moon”

NASA, SpaceX Illustrate Key Moments of Artemis Lunar Lander Mission

Artist's rendering of the Starship HLS on the lunar surface. NASA has contracted with SpaceX to provide the lunar landing system. Credit: SpaceX
Artist's rendering of the Starship HLS on the Moon's surface. NASA has contracted with SpaceX to provide the lunar landing system. Credit: SpaceX

Before the decade is out, as part of the Artemis Program, NASA plans to send astronauts to the Moon for the first time since the Apollo Era. To realize this goal, they have contracted with commercial space industries to develop all the necessary components. This includes the Space Launch System (SLS) and the Orion spacecraft that will take the Artemis astronauts to the Moon. There’s also the Lunar Gateway and the Artemis Base Camp, the infrastructure that will facilitate regular missions to the Moon after 2028.

In between, NASA has also partnered with companies to develop the Human Landing Systems (HLS) that will transport the Artemis astronauts to the lunar surface and back. This includes the Starship HLS SpaceX is currently developing for NASA, which will rendezvous with the Orion spacecraft in lunar orbit and allow the Artemis III astronauts to land on the Moon (which will take place no sooner than September 2026). In a series of newly-updated images, SpaceX has provided artistic renders of what key moments in this mission will look like.

Continue reading “NASA, SpaceX Illustrate Key Moments of Artemis Lunar Lander Mission”

Multimode Propulsion Could Revolutionize How We Launch Things to Space

An illustration of the Gateway’s Power and Propulsion Element and Habitation and Logistics Outpost in orbit around the Moon. Credits: NASA

In a few years, as part of the Artemis Program, NASA will send the “first woman and first person of color” to the lunar surface. This will be the first time astronauts have set foot on the Moon since the Apollo 17 mission in 1972. This will be followed by the creation of permanent infrastructure that will allow for regular missions to the surface (once a year) and a “sustained program of lunar exploration and development.” This will require spacecraft making regular trips between the Earth and Moon to deliver crews, vehicles, and payloads.

In a recent NASA-supported study, a team of researchers at the University of Illinois Urbana-Champaign investigated a new method of sending spacecraft to the Moon. It is known as “multimode propulsion,” a method that integrates a high-thrust chemical mode and a low-thrust electric mode – while using the same propellant. This system has several advantages over other forms of propulsion, not the least of which include being lighter and more cost-effective. With a little luck, NASA could rely on multimode propulsion-equipped spacecraft to achieve many of its Artemis objectives.

Continue reading “Multimode Propulsion Could Revolutionize How We Launch Things to Space”

New Simulation Will Help Future Missions Collect Moon Dust

The ESA lunar base, showing its location within the Shackleton Crater at the lunar south pole. New research proposes building a repository at one of the lunar poles to safeguard Earth's biodiversity. Credit: SOM/ESA

In this decade and the next, multiple space agencies will send crewed missions to the Moon for the first time since the Apollo Era. These missions will culminate in the creation of permanent lunar infrastructure, including habitats, using local resources – aka. In-situ resource utilization (ISRU). This will include lunar regolith, which robots equipped with additive manufacturing (3D printing) will use to fashion building materials. These operations will leverage advances in teleoperation, where controllers on Earth will remotely operate robots on the lunar surface.

According to new research by scientists at the University of Bristol, the technology is one step closer to realization. Through a virtual simulation, the team completed a sample collection task and sent commands to a robot that mimicked the simulation’s actions in real life. Meanwhile, the team monitored the simulation without requiring live camera streams, which are subject to a communications lag on the Moon. This project effectively demonstrates that the team’s method is well-suited for teleoperations on the lunar surface.

Continue reading “New Simulation Will Help Future Missions Collect Moon Dust”

The Artemis Astronauts are Getting New Spacesuits With Some Help From Prada

This is a mock-up of Axiom Space's Axiom Extravehicular Mobility Unit (AxEMU) spacesuit that will be used for NASA’s Artemis III mission. They partnered with Prada to design the suit. Image Credit: Axiom Space/Prada

The Artemis program involves impressive technological advancements in robotics, communications, spacecraft, and advanced habitats, all of which are clearly necessary for such an ambitious endeavour. But the mission also requires updated spacesuits. Those spacesuits are critical to mission success, and the Italian luxury fashion house Prada is adding their knowledge and experience to the design.

Continue reading “The Artemis Astronauts are Getting New Spacesuits With Some Help From Prada”

Artemis Missions Could Put the most Powerful imaging Telescope on the Moon

Simulations depicting the potential solar physics science that the Artemis-enabled Stellar Imager (AeSI) on the Moon could accomplish. (Credit: Figure 2/Rau et al. (2024))

Ground-based interferometry on Earth has proven to be a successful method for conducting science by combining light from several telescopes into acting like a single large telescope. But how can a ultraviolet (UV)/optical interferometer telescope on the Moon deliver enhanced science, and can the Artemis missions help make this a reality? This is what a recently submitted study to the SPIE Astronomical Telescopes + Instrumentation 2024 conference hopes to address as a team of researchers propose the Artemis-enabled Stellar Imager (AeSI) that, as its name implies, could potentially be delivered to the lunar surface via NASA’s upcoming Artemis missions. This proposal was recently accepted as a Phase 1 study through NASA’s Innovative Advanced Concepts (NIAC) program and holds the potential to develop revolutionary extremely high-angular resolution way of conducting science on other planetary bodies while contributing to other missions, as well.

Continue reading “Artemis Missions Could Put the most Powerful imaging Telescope on the Moon”

Artemis III Landing Sites Identified Using Mapping and Algorithm Techniques

Rendition of the 13 candidate landing site regions for NASA’s Artemis III mission, with each region measuring approximately 15 by 15 kilometers (9.3 by 9.3 miles). Final landing sites within those regions measure approximately 200 meters (656 feet) across. (Credit: NASA)

Where would be the most ideal landing site for the Artemis III crew in SpaceX’s Human Landing System (HLS)? This is what a recent study submitted to Acta Astronautica hopes to address as an international team of scientists investigated plausible landing sites within the lunar south pole region, which comes after NASA selected 13 candidate landing regions in August 2022 and holds the potential to enable new methods in determining landing sites for future missions, as well.

Continue reading “Artemis III Landing Sites Identified Using Mapping and Algorithm Techniques”

A Review of Humanity’s Planned Expansion Between the Earth and the Moon

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA

Between Low Earth Orbit (LEO) and the Moon, there is a region of space measuring 384,400 km (238,855 mi) wide known as Cislunar space. In the coming decades, multiple space agencies will send missions to this region to support the development of infrastructure that will lead to a permanent human presence on the Moon. This includes orbital and surface habitats, landing pads, surface vehicles, technologies for in-situ resource utilization (ISRU), and other elements that will enable the long-term exploration and development of the lunar surface.

For all parties concerned, Cislunar space holds immense potential in terms of scientific, commercial, and military applications. The vastly increased level of activity on and around the Moon makes space domain awareness (SDA) – knowledge of all operations within a region of space – paramount. It is also necessary to ensure the continued success and utilization of the covered region. In a recent paper, a team of aerospace engineers considered the missions planned for the coming decades and evaluated the state and shortcomings of their space domain awareness.

Continue reading “A Review of Humanity’s Planned Expansion Between the Earth and the Moon”

Chinese Researchers Devise New Strategy for Producing Water on the Moon

The strategy for in-situ water production on the Moon through the reaction between lunar regolith and endogenous hydrogen. Credit: NIMTE)

In the coming years, China and Roscosmos plan to create the International Lunar Research PStation (ILRSP), a permanent base in the Moon’s southern polar region. Construction of the base will begin with the delivery of the first surface elements by 2030 and is expected to last until about 2040. This base will rival NASA’s Artemis Program, which will include the creation of the Lunar Gateway in orbit around the Moon and the various surface elements that make up the Artemis Base Camp. In addition to the cost of building these facilities, there are many considerable challenges that need to be addressed first.

Crews operating on the lunar surface for extended periods will require regular shipments of supplies. Unlike the International Space Station, which can be resupplied in a matter of hours, sending resupply spacecraft to the Moon will take about three days. As a result, NASA, China, and other space agencies are developing methods to harvest resources directly from the lunar environment – a process known as In-Situ Resource Utilization (ISRU). In a recent paper, a research team with the Chinese Academy of Sciences (CAS) announced a new method for producing massive amounts of water through a reaction between lunar regolith and endogenous hydrogen.

Continue reading “Chinese Researchers Devise New Strategy for Producing Water on the Moon”

Dune-Inspired Stillsuits Could Allow Astronauts to Recycle Their Urine Into Water

A Fremen from Dune wearing a stillsuit. Credit: DALL-E generated image

If history has taught us one thing, it is that science fiction often gives way to science fact. Consider the Star Trek communicator and the rise of flip phones in the late 1990s and early 2000s, or how 2001: A Space Odyssey predicted orbiting space stations and reusable space planes – like the International Space Station (ISS) and the Space Shuttle. And who can forget Jules Verne’s classic, From the Earth to the Moon, and how it anticipated that humans would one day walk on the Moon? Almost a century later, this dream would be realized with the Apollo Program.

The latest comes from Cornell University, where a team of researchers has developed a novel in-suit urine collection and filtration system inspired by the suits the Fremen wore in Frank Herbert’s Dune. Once integrated into NASA’s standard spacesuit—the Extravehicular Mobility Unit (EMU)—this system has the potential to provide astronauts with additional water while reducing the risk of hygiene-related medical events. In short, the stillsuit technology has the potential to enable longer-duration missions on the surface of the Moon, Mars, and orbit.

Continue reading “Dune-Inspired Stillsuits Could Allow Astronauts to Recycle Their Urine Into Water”