13 MORE Things That Saved Apollo 13, part 1: The Failed Oxygen Quantity Sensor

Apollo 13 images via NASA. Montage by Judy Schmidt.

In our original series 5 years ago on the “13 Things That Saved Apollo 13,” the first item we discussed was the timing of the explosion. As NASA engineer Jerry Woodfill told us, if the tank was going to rupture and the crew was going to survive the ordeal, the explosion couldn’t have happened at a better time.

An explosion earlier in the mission (assuming it would have occurred after Apollo 13 left Earth orbit) would have meant the distance and time to get back to Earth would have been so great that there wouldn’t have been sufficient power, water and oxygen for the crew to survive. An explosion later, perhaps after astronauts Jim Lovell and Fred Haise had already descended to the lunar surface, and all three crew members wouldn’t have been able to use the lunar lander as a lifeboat. Additionally, the two spacecraft likely couldn’t have docked back together, and without the descent stage’s consumables left on the Moon (batteries, oxygen, etc.) that would have been a fruitless endeavor.

Now, for our first article in our subsequent series “13 MORE Things That Saved Apollo 13,” we’re going to revisit that timing, but look more in detail as to WHY the explosion happened when it did, and how it affected the rescue of the crew. The answer lies with the failure of a pressure sensor in Oxygen Tank 2, an issue unrelated to the uninsulated wires in the tank that caused the explosion.

Apollo 13 crew:  Jim Lovell, Jack Swigert and Fred Haise.  Credit: NASA
Apollo 13 crew: Jim Lovell, Jack Swigert and Fred Haise. Credit: NASA

Most who are familiar with the story of Apollo 13 are acquainted with the cause of the explosion, later determined by an accident investigation committee led by Edgar Cortright, Director of the Langley Research Center.

The tank had been dropped five years before the flight of Apollo 13, and no one realized the vent tube on the oxygen tank was jarred out of alignment. After a Count Down Demonstration Test (CDDT) conducted on March 16, 1970 when all systems were tested while the Apollo 13 spacecraft sat atop the Saturn V rocket on the launch-pad, the cold liquid oxygen would not empty out of Oxygen Tank 2 through that flawed vent pipe.

The normal approach was to use gaseous oxygen to push the liquid oxygen out of the tank through the vent pipe. Since that wasn’t working, technicians decided the easiest and quickest way to empty the liquid oxygen would be to boil it off using the heaters in the tank.

A graphic depicting the details of oxygen tank number 2 and the heater and thermostat unit.  Credit: NASA.
A graphic depicting the details of oxygen tank number 2 and the heater and thermostat unit. Credit: NASA.

“In each oxygen tank were heaters and a paddle wheel fan,” Woodfill explained. “The heater and fan (stirrer) device encouraged a portion of the cold liquid 02 to turn into a higher pressure 02 gas and flow into the fuel cells. A fan also known as the cryo-stirrer was powered each time the heater was powered. The fan served to stir the liquid 02 to assure it was uniformly consistent in density.”

To protect the heater from being overly hot, a switch-like device called a relay turned off heater power anytime the temperature exceeded 80 degrees F. Also, there was a temperature gauge which technicians on the ground could monitor if temperature exceeded 80 degree F.

The original Apollo spacecraft worked on 28 volts of electricity, but after the 1967 fire on the Launchpad for Apollo 1, the Apollo spacecraft’s electrical systems had been modified to handle 65 volts from the external ground test equipment. Unfortunately Beech, the tank’s manufacturer failed to change out this tank, and the heater safety switch was still set for 28 volt operation.

“When the heater was powered up to vent the tank, the higher voltage “fused” the relay contacts so that the switch could not turn off power when the temperature of the tank exceeded 80 degrees F (27 C),” said Woodfill.

Additionally, the temperature gauge on the ground test panel only went to 88 degrees F (29.5 C), so no one was aware of this excessive heat.

A graphic of the interior of the Apollo  13 Service Module and the location of the oxygen tanks relative to the other systems. Credit: NASA.
A graphic of the interior of the Apollo 13 Service Module and the location of the oxygen tanks relative to the other systems. Credit: NASA.

“As a result,” said Woodfill, “the heater and the wires which powered it reached estimated temperatures of around 1000 degrees F. (538°C), hot enough to melt the Teflon insulation on the heater wires and leave portions of them bare. Bare wires meant the potential for a short-circuit and an explosion since these wires were immersed in the liquid oxygen.”

Because the tank had been dropped, and because its heater design had not been updated for 65 volt operation, the tank was a virtual bomb, Woodfill said. Anytime power was applied to those heaters to stir the tank’s liquid oxygen, an explosion was possible.

At 55:54:53 Mission Elapsed Time (MET), the crew was asked to conduct a stir of the oxygen tanks. It was then that the damaged wires in Oxygen Tank 2 shorted out and the insulation ignited. The resulting fire rapidly increased pressure beyond its nominal 1,000 psi (7 MPa) limit and either the tank or the tank dome failed.

But back to the quantity sensor on Oxygen Tank 2. For a reason yet to be understood, during the early part of the Apollo 13 flight, the sensor failed. Prior to launch, that Tank 2 quantity sensor was being monitored by the onboard telemetry system, and it apparently worked perfectly.

“The failure of that probe in space is, perhaps, the most important reason Apollo 13’s crew lived,” said Woodfill.

Here’s the explanation of why Woodfill makes that claim.

Cover to the Apollo 13 flight plan. Credit: NASA.
Cover to the Apollo 13 flight plan. Credit: NASA.

Woodfill’s research of Apollo 13 indicated that standard operating procedure (SOP) had Mission Control request a stirring of the cryos approximately every 24 hours. For the Apollo 13 mission, the first stir came about 24 hours into the mission (23:20:23 MET). Ordinarily, the next cryo stir would not be called for until 24 hours later. The heater-cryo stir procedure was done to assure accuracy of the quantity gauge and proper operation of the system through the elimination of O2 stratification. The sensor read more accurately because the stir made the liquid oxygen more uniform and less stratified. After the first stir, 87 % remaining oxygen quantity was indicated, a bit ahead of expectations. The next stir came about a day later, about 46:40 MET.

At the time of this second heater-cryo-stir, Oxygen Tank 2’s quantity sensor failed. Post mission analysis by the investigation committee indicated the failure was not related to the bare heater wires.

The loss of ability to monitor Oxygen Tank 2’s quantity caused mission control to radio to the crew: “(Because the quantity sensor failed,) we’re going to be requesting you stir the cryos every six hours to help gage how much 02 is in tank 2.”

However, Mission Control chose to perform some analysis of the situation in Tank 2 by calling for another stir, not at 53 hours MET but at 47:54:50 MET and still another at 51:07:41 . Because the other oxygen tank, Tank 1, indicated a low pressure, both tanks were stirred at 55:53.

“Count the number of stirs since launch,” Woodfill said. “1. at 23:20:23, 2. at 46:40, 3. at 47:54:50, 4. at 51:07:44 and 5. at 55:53. There were five applications of current to those bare heater wires. The last three occurred over a period of only 8 hours rather than 72 hours. Had it not been for the non-threatening failure of Tank 2’s quantity probe and the low pressure in O2 Tank 1, this would not have been the case.”

Woodfill explained that anyone who has analyzed hardware failures understands that the more frequent and shorter the period between operations of a flawed component hastens ultimate failure. NASA performs stress testing on hundreds of electrical systems using this approach. More frequent power-ups at shorter intervals encourages flawed systems to fail sooner.

The short circuit in Oxygen Tank 2 after the fifth heater-cryo-stir resulted in the explosion of Apollo 13’s Oxygen Tank 2. Had the normal sequence of stirs been performed at 24 hour intervals, and the failure came after the fifth stirring, the explosion would have occurred after the lunar module, the life boat, was no longer available.

“I contend that the quantity sensor malfunction was fortuitous and assured the lander would be present and fully fueled at the time of the disaster,” Woodfill said.

5 heater actuations at 24 hours periods amounts to a MET of 120 hours.

“The lunar lander would have departed for the Moon at 103.5 hours into the mission,” Woodfill said. “At 120 hours into the mission, the crew of Lovell and Haise would have been awakened from their sleep period, having completed their first moon walk eight hours before. They would receive an urgent call from Jack Swigert and/or Mission Control that something was amiss with the Mother ship orbiting the Moon.”

Furthermore, Woodfill surmised, analysis of Swigert’s ship’s problems would likely be clouded by the absence of his two crewmates on the lunar surface. Added problems for Mission Control would have been the interruption of communications each time the command ship went behind the Moon, interrupting the telemetry so crucial to analyzing the failure. When it became evident, the cryogenic system would no longer produce oxygen, water, and electrical power, those command module emergency batteries would have been activated. Likely, Mission Control would have ordered an abort of the lunar lander earlier, but, of course, that would have been futile. Had the tiny lander’s ascent stage rendezvoused and docked with the depleted CM, all the life supporting descent stage consumables would remain on the Moon.

“The nightmare would have the Apollo 13 crew saying their last farewells to their families and friends,” said Woodfill. “One can only speculate how the end might have come.”

And there likely would not have been Apollo 14, 15, 16 and 17 — at least not for a very long time.

Apollo 13 launch. Credit: NASA
Apollo 13 launch. Credit: NASA

Another aspect of the timing of the explosion that Woodfill has considered is, why didn’t the tank explode on the Launchpad?

Following the March 16 CDDT, no additional “power-up” or tests were planned. However, it is not uncommon for pre-launch re-verification to be performed.

“One such re-check might easily have been these heater circuits since they had been used in a non-standard way to empty the oxygen from the cryo tanks after the Countdown Demonstration Test (CDDT) weeks earlier,” Woodfill said. “Such re-do’s often occur for myriad reasons. For Apollo 13, despite the compromised system, none occurred until the craft was safely on its way to the Moon.”

However, such a routine re-test involving cryo stirring would have unknowingly jeopardized the launch vehicle, support persons, or astronaut crew.

Or, if the quantity sensor had failed on the ground, likely the same kind of trouble shooting that was done by Mission Control and the Apollo 13 crew, would have been performed by the KSC ground team.

Had the sensor failed at that time, a series of heater actuations/stirrings would have been executed to trouble-shoot the device.

“Of course, the result would have been the same kind of explosion nearly 55 hours 55 minutes after launch,” Woodfill said. “On the ground, the Apollo 13 explosion could have taken the lives of Lovell and crew if trouble-shooting had been done while the crew awaited launch.”

If the trouble-shooting had been done earlier, with several heater actuations/stirrings during the days before the launch, Woodfill said, “a terrible loss of life would have ensued with, potentially, scores of dedicated Kennedy Space Center aerospace workers bravely attempting to fix the problem. And the towering thirty-six story Saturn 5 would have collapsed earthward in a ball of fire reminiscent of that December 1957 demise of America’s Vanguard rocket.”

“Yes, the fact that the Oxygen Tank 2 quantity sensor did not fail on the launch pad, but failed early in the flight was one of the additional things that saved Apollo 13.”

Read our introduction to this series here.

Additional articles in this series that have now been published:

Introduction

Part 1: The Failed Oxygen Quantity Sensor

Part 2: Simultaneous Presence of Kranz and Lunney at the Onset of the Rescue

Part 3: Detuning the Saturn V’s 3rd Stage Radio

Part 4: Early Entry into the Lander

Part 5: The CO2 Partial Pressure Sensor

Part 6: The Mysterious Longer-Than-Expected Communications Blackout

Part 7: Isolating the Surge Tank

Part 8: The Indestructible S-Band/Hi-Gain Antenna

Part 9: Avoiding Gimbal Lock

Part 10: ‘MacGyvering’ with Everyday Items

Part 11: The Caution and Warning System

Part 12: The Trench Band of Brothers

Find all the original “13 Things That Saved Apollo 13″ (published in 2010) at this link.

13 MORE Things That Saved Apollo 13

Apollo 13 images via NASA. Montage by Judy Schmidt.

“Things had gone real well up to at that point of 55 hours, 54 minutes and 53 seconds (mission elapsed time),” said Apollo 13 astronaut Fred Haise as he recounted the evening of April 13, 1970, the night the Apollo 13’s command module’s oxygen tank exploded, crippling the spacecraft and endangering the three astronauts on board.

“Mission Control had asked for a cryo-stir in the oxygen tank …and Jack threw the switches,” Haise continued. “There was a very loud bang that echoed through the metal hull, and I could hear and see metal popping in the tunnel [between the command module and the lunar lander]… There was a lot of confusion initially because the array of warning lights that were on didn’t resemble anything we have ever thought would represent a credible failure. It wasn’t like anything we were exposed to in the simulations.”

What followed was a four-day ordeal as Haise, Jim Lovell and Jack Swigert struggled to get back to Earth, as thousands of people back on Earth worked around the clock to ensure the astronauts’ safe return.

Jerry Woodfill and Fred Haise at the 40th anniversary celebration of Apollo 13 at JSC.  Image courtesy Jerry Woodfill.
Jerry Woodfill and Fred Haise at the 40th anniversary celebration of Apollo 13 at JSC. Image courtesy Jerry Woodfill.

Haise described the moment of the explosion during an event in 2010 at the Smithsonian Air and Space Museum commemorating the 40th anniversary of the mission that’s been called a successful failure.

In 2010, Universe Today also commemorated the Apollo 13 anniversary with a series of articles titled “13 Things That Saved Apollo 13.” We looked at 13 different items and events that helped turn the failure into success, overcoming the odds to get the crew back home. We interviewed NASA engineer Jerry Woodfill, who helped design the alarm and warning light system for the Apollo program, which Haise described above.

Now, five years later on the 45th anniversary of Apollo 13, Woodfill returns with “13 MORE Things That Saved Apollo 13.” Over the next few weeks, we’ll look at 13 additional things that helped bring the crew home safely.

Jerry Woodfill working in the Apollo Mission Evaluation Room.  Credit:  Jerry Woodfill.
Jerry Woodfill working in the Apollo Mission Evaluation Room. Credit: Jerry Woodfill.

Woodfill has worked for NASA for almost 50 years as an engineer, and is one of 27 people still remaining at Johnson Space Center who were also there for the Apollo program. In the early days of Apollo, Woodfill was the project engineer for the spacecraft switches, gauges, and display and control panels, including the command ship’s warning system.

On that night in April 1970 when the oxygen tank in Apollo 13’s command module exploded, 27-year-old Woodfill sat at his console in the Mission Evaluation Room (MER) at Johnson Space Center, monitoring the caution and warning system.

“It was 9:08 pm, and I looked at the console because it flickered a few times and then I saw a master alarm come on,” Woodfill said. “Initially I thought something was wrong with the alarm system or the instrumentation, but then I heard Jack Swigert in my headset: “Houston, we’ve had a problem,” and then a few moments later, Jim Lovell said the same thing.”

Listen to the audio of communications between the crew and Mission Control at the time of the explosion:

Located in an auxiliary building, the MER housed the engineers who were experts in the spacecrafts’ systems. Should an inexplicable glitch occur, the MER team could be consulted. And when alarms starting ringing, the MER team WAS consulted.

Woodfill has written a webpage detailing the difference between the MER and Misson Control (Mission Operations Control Room, or MOCR).

The Mission Evaluation Room.  Credit: Jerry Woodfill.
The Mission Evaluation Room. Credit: Jerry Woodfill.

The ebullient and endearing Woodfill brings a wealth of knowledge — as well as his love for public outreach for NASA — to everything he does. But also, for the past 45 years he has studied the Apollo 13 mission in intricate detail, examining all the various facets of the rescue by going through flight transcripts, debriefs, and other documents, plus he’s talked to many other people who worked during the mission. Fascinated by the turn of events and individuals involved who turned failure into success, Woodfill has come up with 13 MORE things that saved Apollo 13, in addition to the original 13 he shared with us in 2010.

Woodfill tends to downplay both his role in Apollo 13 and the significance of the MER.

“In the MER, I was never involved or central to the main events which rescued Apollo 13,” Woodfill told Universe Today. “Our group was available for mission support. We weren’t flight controllers, but we were experts. For other missions that were routine we didn’t play that big of a role, but for the Apollo 13 mission, we did play a role.”

But Apollo Flight Director Gene Kranz, also speaking at the 2010 event at the Smithsonian Air and Space Museum, has never forgotten the important role the MER team played.

“The thing that was almost miraculous here [for the rescue], was I think to a great extent, the young controllers, particularly the systems guys who basically invented the discipline of what we now call systems engineering,” Kranz said. “The way these guys all learned their business, … got to know the designs, the people and the spacecraft … and they had to translate all that into useful materials that they could use on console in real time.”

Apollo 13 astronauts Fred Haise, Jim Lovell and Jack Swigert after they splashed down safely. Credit: NASA.
Apollo 13 astronauts Fred Haise, Jim Lovell and Jack Swigert after they splashed down safely. Credit: NASA.

Join Universe Today in celebrating the 45th anniversary of Apollo 13 with Woodfill’s insights as we discuss each of the 13 additional turning points in the mission. And here’s a look back at the original “13 Things That Saved Apollo 13:

Part 1: Timing

Part 2: The Hatch That Wouldn’t Close

Part 3: Charlie Duke’s Measles

Part 4: Using the LM for Propulsion

Part 5: Unexplained Shutdown of the Saturn V Center Engine

Part 6: Navigating by Earth’s Terminator

Part 7: The Apollo 1 Fire

Part 8: The Command Module Wasn’t Severed

Part 9: Position of the Tanks

Part 10: Duct Tape

Part 11: A Hollywood Movie

Part 12: Lunar Orbit Rendezvous

Part 13: The Mission Operations Team

Also:

Your Questions about Apollo 13 Answered by Jerry Woodfill (Part 1)

More Reader Questions about Apollo 13 Answered by Jerry Woodfill (part 2)

Final Round of Apollo 13 Questions Answered by Jerry Woodfill (part 3)

Never Before Published Images of Apollo 13’s Recovery

There Could Be Lava Tubes on the Moon, Large Enough for Whole Cities

Rima Ariadaeus as photographed from Apollo 10. The crater to the south of the rille in the left half of the image is Silberschlag. The dark patch at the top right is the floor of the crater Boscovich. Credit: NASA

Every year since 1970, astronomers, geologists, geophysicists, and a host of other specialists have come together to participate in the Lunar and Planetary Science Conference (LPCS). Jointly sponsored by the Lunar and Planetary Institute (LPI) and NASA’s Johnson Space Center (JSC), this annual event is a chance for scientists from all around the world to share and present the latest planetary research concerning Earth’s only moon.

This year, one of the biggest attention-grabbers was the findings presented on Tuesday, March 17th by a team of students from Purdue University. Led by a graduate student from the university’s Department of Earth, Atmospheric and Planetary Sciences, the study they shared indicates that there may be stable lava tubes on the moon, ones large enough to house entire cities.

In addition to being a target for future geological and geophysical studies, the existence of these tubes could also be a boon for future human space exploration. Basically, they argued, such large, stable underground tunnels could provide a home for human settlements, shielding them from harmful cosmic radiation and extremes in temperature.

The Hadley Rille, at the foot of the Apennine Mountains encircling the Mare Imbrium where Apollo 15 landed (NASA/JAXA)
The Hadley Rille, at the foot of the Apennine Mountains encircling the Mare Imbrium where Apollo 15 landed. Credit: NASA/JAXA

Lava tubes are natural conduits formed by flowing lava that is moving beneath the surface as a result of a volcanic eruption. As the lava moves, the outer edges of it cools, forming a hardened, channel-like crust which is left behind once the lava flow stops. For some time, Lunar scientists have been speculating as to whether or not lava flows happen on the Moon, as evidenced by the presence of sinuous rilles on the surface.

Sinuous rilles are narrow depressions in the lunar surface that resemble channels, and have a curved paths that meanders across the landscape like a river valley. It is currently believed that these rilles are the remains of collapsed lava tubes or extinct lava flows, which is backed up by the fact they usually begin at the site of an extinct volcano.

Those that have been observed on the Moon in the past range in size of up to 10 kilometers in width and hundreds of kilometers in length. At that size, the existence of a stable tube – i.e. one which had not collapsed to form a sinuous rille – would be large enough to accommodate a major city.

For the sake of their study, the Purdue team explored whether lava tubes of the same scale could exist underground. What they found was that the stability of a lava tube depended on a number of variables- including width, roof thickness and the stress state of the cooled lava. he researchers also modeled lava tubes with walls created by lava placed in one thick layer and with lava placed in many thin layers.

The city of Philadelphia is shown inside a theoretical lunar lava tube. A Purdue University team of researchers explored whether lava tubes more than 1 kilometer wide could remain structurally stable on the moon. (Purdue University/courtesy of David Blair)
The inside of a theoretical lunar lava tube, with the city of Philadelphia shown for scale. Credit: Purdue University/David Blair

David Blair, a graduate student in Purdue’s Department of Earth, Atmospheric and Planetary Sciences, led the study that examined whether empty lava tubes more than 1 kilometer wide could remain structurally stable on the moon.

Our work is somewhat unique in that we’ve combined the talents of people from various Departments at Purdue,” Blair told Universe Today via email. “With guidance from Prof. Bobet (a civil engineering professor) we’ve been able to incorporate a modern understanding of rock mechanics into our computer models of lava tubes to see how they might actually fail and break under lunar gravity.”

For the sake of their research, the team constructed a number of models of lava tubes of different sizes and with different roof thicknesses to test for stability. This consisted of them checking each model to see if it predicted failure anywhere in the lava tube’s roof.

“What we found was surprising,” Blair continued, “in that much larger lava tubes are theoretically possible than what was previously thought. Even with a roof only a few meters thick, lava tubes a kilometer wide may be able to stay standing. The reason why, though, is a little less surprising. The last work we could find on the subject is from the Apollo era, and used a much simpler approximation of lava tube shape – a flat beam for a roof.

 Mons Rümker rise on the Oceanus Procellarum was taken from the Apollo 15 while in lunar orbit.
Mons Rümker, an extinct volcanic formation on the Moon’s surface, as imaged by the Apollo 15 spacecraft while in orbit. Credit: NASA

The study he refers to, “On the origin of lunar sinuous rilles“, was published in 1969 in the journal Modern Geology. In it, professors Greeley, Oberbeck and Quaide advanced the argument that sinuous rilles formation was tied to the collapse of lava flow tubes, and that stable ones might still exist. Calculating for a flat-beam roof, their work found a maximum lava tube size of just under 400 m.

“Our models use a geometry more similar to what’s seen in lava tubes on Earth,” Blair said, “a sort of half-elliptical shape with an arched roof. The fact that an arched roof lets a larger lava tube stay standing makes sense: humans have known since antiquity that arched roofs allow tunnels or bridges to stay standing with wider spans.”

The Purdue study also builds on previous studies conducted by JAXA and NASA where images of “skylights” on the Moon – i.e. holes in the lunar surface – confirmed the presence of caverns at least a few tens of meters across. The data from NASA’s lunar Gravity Recovery And Interior Laboratory (GRAIL) – which showed big variations in the thickness of the Moon’s crust  is still being interpreted, but could also be an indication of large subsurface recesses.

As a result, Blair is confident that their work opens up new and feasible explanations for many different types of observations that have been made before. Previously, it was unfathomable that large, stable caverns could exist on the Moon. But thanks to his team’s theoretical study, it is now known that under the proper conditions, it is least possible.

The thickness of the moon's crust as calculated by NASA's GRAIL mission. The near side is on the left-hand side of the picture, and the far side on the right. Credit: NASA/JPL-Caltech/S. Miljkovic
NASA’s lunar Gravity Recovery And Interior Laboratory (GRAIL) mission calculated the thickness of the moon’s crust. Credit: NASA/JPL-Caltech/S. Miljkovic

Another exciting aspect that this work is the implications it offers for future exploration and even colonization on the Moon. Already, the issue of protection against radiation is a big one. Given that the Moon has no atmosphere, colonists and agricultural operations will have no natural shielding from cosmic rays.

“Geologically stable lava tubes would absolutely be a boon to human space exploration,” Blair commented. “A cavern like that could be a really ideal place for building a lunar base, and generally for supporting a sustained human presence on the Moon. By going below the surface even a few meters, you suddenly mitigate a lot of the problems with trying to inhabit the lunar surface.”

Basically, in addition to protecting against radiation, a subsurface base would sidestep the problems of micrometeorites and the extreme changes in temperature that are common on the lunar surface. What’s more, stable, subsurface lava tubes could also make the task of pressurizing a base for human habitation easier.

“People have studied and talked about all of these things before,” Blair added, “but our work shows that those kinds of opportunities could potentially exist – now we just have to find them. Humans have been living in caves since the beginning, and it might make sense on the Moon, too!”

In addition to Melosh, Blair and Bobet, team members include Loic Chappaz and Rohan Sood, graduate students in the School of Aeronautics and Astronautics; Kathleen Howell, Purdue’s Hsu Lo Professor of Aeronautical and Astronautical Engineering; Andy M. Freed, an associate professor of earth, atmospheric and planetary sciences; and Colleen Milbury, a postdoctoral research associate in the Department of Earth, Atmospheric and Planetary Sciences.

Further Reading: Purdue News

Elon Musk and the SpaceX Odyssey: the Path from Falcon 9 to Mars Colonization Transporter

ILLUSTRATION IS RESERVED - DO NOT USE. Are we seeing the convergence of a century of space science and science fiction before our eyes? Will Musk and SpaceX make 2001 Space Odyssey a reality? (Photo Credit: NASA, Apple, SpaceX, Tesla Motors, MGM, Paramount Pictures, Illustration – Judy Schmidt)

In Kubrick’s and Clark’s 2001 Space Odyssey, there was no question of “Boots or Bots”[ref]. The monolith had been left for humanity as a mileage and direction marker on Route 66 to the stars. So we went to Jupiter and Dave Bowman overcame a sentient machine, shut it down cold and went forth to discover the greatest story yet to be told.

Now Elon Musk, born three years after the great science fiction movie and one year before the last Apollo mission to the Moon has set his goals, is achieving milestones to lift humans beyond low-Earth orbit, beyond the bonds of Earth’s gravity and take us to the first stop in the final frontier – Mars – the destination of the SpaceX odyssey.

Marvel claims Musk as the inspiration for Tony Stark in Ironman but for countless space advocates around the World he is the embodiment of Dave Bowman, the astronaut in 2001 Space Odyssey destined to travel to the edge of the Universe and retire an old man on Mars. (Photo Credit: NASA, MGM, Paramount Pictures, Illustration – Judy Schmidt)
Marvel claims Musk as the inspiration for Tony Stark in Ironman but for countless space advocates around the World he is the embodiment of Dave Bowman, the astronaut in 2001 Space Odyssey destined to travel to the edge of the Universe and retire an old man on Mars. (Photo Credit: NASA, MGM, Paramount Pictures, Illustration – Judy Schmidt)

Ask him what’s next and nowhere on his bucket list does he have Disneyland or Disney World. You will find Falcon 9R, Falcon Heavy, Dragon Crew, Raptor Engine and Mars Colonization Transporter (MCT).

At the top of his working list is the continued clean launch record of the Falcon 9 and beside that must-have is the milestone of a soft landing of a Falcon 9 core. To reach this milestone, Elon Musk has an impressive array of successes and also failures – necessary, to-be-expected and effectively of equal value. His plans for tomorrow are keeping us on the edge of our seats.

The Dragn Crew capsule is more than a modernized Apollo capsule. It will land softly and at least on Earth will be reusable while Musk and SpaceX dream of landing Falcon Crew on Mars. (Photo Credits: SpaceX)
The Dragon Crew capsule is more than a modernized Apollo capsule. It will land softly and at least on Earth will be reusable while Musk and SpaceX dream of landing Falcon Crew on Mars. (Photo Credits: SpaceX)

CRS-5, the Cargo Resupply mission number 5, was an unadulterated success and to make it even better, Elon’s crew took another step towards the first soft  landing of a Falcon core, even though it wasn’t entirely successful. Elon explained that they ran out of hydaulic fluid. Additionally, there is a slew of telemetry that his engineers are analyzing to optimize the control software. Could it have been just a shortage of fluid? Yes, it’s possible they could extrapolate the performance that was cut short and recognize the landing Musk and crew dreamed of.

A successful failure of a soft landing had no baring on the successful launch of the CRS-5, the cargo resupply mission to ISS. (Image Credits: SpaceX)
A successful failure of a soft landing had no baring on the successful launch of the CRS-5, the cargo resupply mission to ISS. (Image Credits: SpaceX)

The addition of the new grid fins to improve control both assured the observed level of success and also assured failure. Anytime one adds something unproven to a test vehicle, the risk of failure is raised. This was a fantastic failure that provided a treasure trove of new telemetry and the possibilities to optimize software. More hydraulic fluid is a must but improvements to SpaceX software is what will bring a repeatable string of Falcon core soft landings.

“Failure is not an option,” are the famous words spoken by Eugene Kranz as he’s depicted in the movie Apollo 13. Failure to Elon Musk and to all of us is an essential part of living. However, from Newton to Einstein to Hawking, the equations to describe and define how the Universe functions cannot show failure otherwise they are imperfect and must be replaced. Every moment of a human life is an intertwined array of success and failure. Referring only to the final frontier, in the worse cases, teams fall out of balance and ships fall out of the sky. Just one individual can make a difference between his or a team’s success. Failure, trial and error is a part of Elon’s and SpaceX’s success.

Only the ULA Delta IV Heavy image is real. TBC - to be completed - is the status of Delta Heavy. To be launch on its maiden flight in 2015, Falcon Heavy will become the most powerful American-made launch vehicle since Von Braun's Saturn rocket of the d1960s. (Credits: SpaceX, ULA)
Only the ULA Delta IV Heavy image is real. TBC – to be completed – is the status of Falcon Heavy. To be launch on its maiden flight in 2015, Falcon Heavy will become the most powerful American-made launch vehicle since Von Braun’s Saturn rocket of the d1960s. (Credits: SpaceX, ULA)

He doesn’t quote or refer to Steve Jobs but Elon Musk is his American successor. From Hyperloops, to the next generation of Tesla electric vehicles, Musk is wasting no time unloading ideas and making his dreams reality. Achieving his goals, making milestones depends also on bottom line – price and performance into profits. The Falcon rockets are under-cutting ULA EELVs (Atlas & Delta) by more than half in price per pound of payload and even more with future reuse. With Falcon Heavy he will also stake claim to the most powerful American-made rocket.

In both cost and performance the Falcon 9 and Heavy outperform the Delta IV. The Falcon vehicle is disruptive technology. (Illustration: T.Reyes)
In both cost and performance the Falcon 9 and Heavy outperform the Delta IV. The Falcon vehicle is disruptive technology. (Illustration: T.Reyes)

Musk’s success will depend on demand for his product. News in the last week of his investments in worldwide space-based internet service also shows his intent to promote products that will utilize his low-cost launch solutions. The next generation of space industry could falter without investors and from the likes of Musk, re-investing to build demand for launch and sustaining young companies through their start-up phases. Build it and they will come but take for granted, not recognize the fragility of the industry, is at your own peril.

So what is next in the SpaceX Odyssey? Elon’s sights remain firmly on the Falcon 9R (Reuse) and the Falcon Heavy. Nothing revolutionary on first appearance, the Falcon Heavy will look like a Delta IV Heavy on steroids. Price and performance will determine its success – there is no comparison. It is unclear what will become of the Delta IV Heavy once the Falcon Heavy is ready for service. There may be configurations of the Delta IV with an upper stage that SpaceX cannot match for a time but either way, the US government is likely to effectively provide welfare for the Delta and even Atlas vehicles until ULA (Lockheed Martin and Boeing’s developed corporation) can develop a competitive solution. The only advantage remaining for ULA is that Falcon Heavy hasn’t launched yet. Falcon Heavy, based on Falcon 9, does carry a likelihood of success based on Falcon 9’s 13 of 13 successful launches over the last 5 years. Delta IV Heavy has had 7 of 8 successful launches over a span of 11 years.

The legacy that Elon and SpaceX stand upon is a century old. William Gerstenmaier, a native of the state of Ohio - First in Flight, associate administrator for NASA Human Spaceflight and past program manager of ISS has been a prime executor of NASA human spaceflight for two decades. Elon Musk shares in common a long-time enthusiasm for space exploration with Gerstenmaier.  From top left, clockwise, Eugene Kranz, Michael Collins, Neil Armstron, Edwin (Buzz) Aldrin, W. Gerstenmaier, Michael Griffin, NASA Administrator Charles Bolden shaking hands with Elon Musk. (Photo Credits: NASA, SpaceX, Illustration, J.Schmidt/T.Reyes)
The legacy that Elon and SpaceX stand upon is a century old. The Ohio native, William Gerstenmaier, associate administrator for NASA Human Spaceflight and past program manager of ISS, like Musk and so many others, dreamed of space exploration from an early age. From top left, clockwise, Eugene Kranz, Michael Collins, Neil Armstrong, Edwin (Buzz) Aldrin, W. Gerstenmaier, Michael Griffin, NASA Administrator Charles Bolden shaking hands with Elon Musk, the Apollo 11 crew embarking on their famous voyage(center). (Photo Credits: NASA, SpaceX, Illustration, J.Schmidt/T.Reyes)

The convergence of space science and technology and science fiction in the form of Musk’s visions for SpaceX is linked to the NASA legacy beginning with NASA in 1958, accelerated by JFK in 1962 and landing upon the Moon in 1969. The legacy spans backward in time to Konstantin Tsiolkovsky, Robert Goddard, Werner Von Braun and countless engineers and forward through the Space Shuttle and Space Station era.

A snapshot from the  SpaceX webpage describing their successful first flight of the Dragon Cargo vessel on Falcon 9. Musk's SpaceX could not have achieved so much so quickly without the knowledge and support of NASA. (Credit: SpaceX)
A snapshot from the SpaceX webpage describing their successful first flight of the Dragon Cargo vessel on Falcon 9. Musk’s SpaceX could not have achieved so much so quickly without the knowledge and support of NASA. (Credit: SpaceX)

The legacy of Shuttle is that NASA remained Earth-bound for 30-plus years during a time that Elon Musk grew up in South Africa and Canada and finally brought his visions to the United States. With a more daring path by NASA, the story to tell today would have been Moon bases or Mars missions completed in the 1990s and commercial space development that might have outpaced or pale in comparison to today’s. Whether Musk would be present in commercial space under this alternate reality is very uncertain. But Shuttle retirement, under-funding its successor, the Ares I & V and Orion, cancelling the whole Constellation program, then creating Commercial Crew program, led to SpaceX winning a contract and accelerated development of Falcon 9 and the Dragon capsule.

Mars as it might look to the human eye  of colonists on final approach to the red planet. To Elon Musk, this is the big prize and a place to retire and relish his accomplishments if only for a brief moment. (Credit: NASA)
Mars as it might look to the human eye of colonists on final approach to the red planet. To Elon Musk, this is the big prize and a place to retire and relish his accomplishments if only for a brief moment. (Credit: NASA)

SpaceX is not meant to just make widgets and profit. Mars is the objective and whether by SpaceX or otherwise, it is the first stop in humankind’s journey into the final frontier. Mars is why Musk developed SpaceX. To that end, the first focal point for SpaceX has been the development of the Merlin engine.

Now, SpaceX’s plans for Mars are focusing on a new engine – Raptor and not a Merlin 2 – which will operate on liquified methane and liquid oxygen. The advantage of methane is its cleaner combustion leaving less exhaust deposits within the reusable engines. Furthermore, the Raptor will spearhead development of an engine that will land on Mar and be refueled with Methane produced from Martian natural resources.

The Raptor remains a few years off and the design is changing. A test stand has been developed for testing Raptor engine components at NASA’s Stennis Space Center. In a January Reddit chat session[ref] with enthusiasts, Elon replied that rather than being a Saturn F-1 class engine, that is, thrust of about 1.5 million lbf (foot-lbs force), his engineers are dialing down the size to optimize performance and reliability. Musk stated that plans call for Raptor engines to produce 500,000 lbf (2.2 million newtons) of thrust. While smaller, this represents a future engine that is 3 times as powerful as the present Merlin engine (700k newtons/157 klbf). It is 1/3rd the power of an F-1. Musk and company will continue to cluster engines to make big rockets.

The future line-up of Falcon rockets is compared to the famous NASA Saturn V. The first Falcon Heavy launch is planned for 2015. Raptor engines may replace and upgrade Heavy then lead to Falcon X, Falcon X Heavy and Falcon XX. The Falcon X  1st stage would have half the thrust of a Saturn V, Falcon X Heavy and XX would exceed a Saturn V's thrust by nearly 50%. (Illustration Credit: SpaceX, 2010)
The future line-up of Falcon rockets is compared to the famous NASA Saturn V. The first Falcon Heavy launch is planned for 2015. Raptor engines may replace and upgrade Heavy then lead to Falcon X, Falcon X Heavy and Falcon XX. The Falcon X 1st stage would have half the thrust of a Saturn V, Falcon X Heavy and XX would exceed a Saturn V’s thrust by nearly 50%. (Illustration Credit: SpaceX, 2010)

To achieve their ultimate goal – Mars colonization, SpaceX will require a big rocket. Elon Musk has repeatedly stated that a delivery of 100 colonists per trip is the present vision. The vision calls for the Mars Colonization Transporter (MCT). This spaceship has no publicly shared SpaceX concept illustrations as yet but more information is planned soon. A few enthusiasts on the web have shared their visions of MCT. What we can imagine is that MCT will become a interplanetary ferry.

The large vehicle is likely to be constructed in low-Earth orbit and remain in space, ferrying colonists between Earth orbit and Mars orbit. Raptor methane/LOX engines will drive it to Mars and back. Possibly, aerobraking will be employed at both ends to reduce costs. Raptor engines will be used to lift a score of passengers at a time and fill the living quarters of the waiting MCT vehicle. Once orbiting Mars, how does one deliver 100 colonists to the surface? With atmospheric pressure at its surface equivalent to Earth’s at 100,000 feet, Mars does not provide an Earth-like aerodynamics to land a large vehicle.

In between launching V-2s in New Mexico and developing rockets at Redstone Arsenal, Von Braun had time to write Mars Projekt (1952) in which he outlined a mission to Mars delivering 70 explorers. Much has changed since that early vision but some of his concepts may still become a reality and solve the problem of sending SpaceX colonists to Mars. (Credit: Mars Project, Von Braun)
In between launching V-2s in New Mexico and developing rockets at Redstone Arsenal, Von Braun had time to write Mars Projekt (1952) in which he outlined a mission to Mars delivering 70 explorers. Much has changed since that early vision but some of his concepts may still become a reality and solve the problem of sending SpaceX colonists to Mars. (Credit: Mars Project, Von Braun)

In 1952, Werner Von Braun in his book “Mars Projekt” envisioned an armada of ships, each depending on launch vehicles much larger than the Saturn V he designed a decade later. Like the invading Martians of War of the Worlds, the armada would rather converge on Mars and deploy dozens of winged landing vehicles that would use selected flat Martian plain to skid with passengers to a safe landing. For now, Elon and SpaceX illustrate the landing of Dragon capsules on Mars but it will clearly require a much larger lander. Perhaps, it will use future Raptors to land softly or possibly employ winged landers such as Von Braun’s after robotic Earth-movers on Mars have constructed ten or twenty mile long runways.

We wait and see what is next for Elon Musk’s SpaceX vision, his SpaceX Odyssey. For Elon Musk and his crew, there are no “wives” – Penelope and families awaiting their arrival on Mars. Their mission is more than a five year journey such as Star Trek. The trip to Mars will take the common 7 months of a Hohmann transfer orbit but the mission is really measured in decades. In the short-term, Falcon 9 is poised to launch again in early February and will again attempt a soft landing on a barge at sea. And later, hopefully, in 2015, the Falcon Heavy will make its maiden flight from Cape Canaveral’s rebuilt launch pad 39A where the Saturn V lifted Apollo 11 to the Moon and the first, last and many Space Shuttles were launched.

References:

National Aeronatics and Space Administration

Space Exploration Web Pages

Happy Birthday to my sister Sylvia who brought home posters, literature and interest from North American-Rockwell in Downey during the Apollo era and sparked my interest.

The Dawn of Orion and the Path Beyond Earth: Spectacular Launch Gallery

Orion’s inaugural launch on Dec. 5, 2014 atop United Launch Alliance Delta 4 Heavy rocket at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station, Florida at 7:05 a.m. Credit: Alex Polimeni/Zero-G News/AmericaSpace

Orion’s inaugural launch on Dec. 5, 2014 atop United Launch Alliance Delta 4 Heavy rocket at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station, Florida at 7:05 a.m. Credit: Alex Polimeni/Zero-G News/AmericaSpace
Expanded with a growing gallery![/caption]

KENNEDY SPACE CENTER, FL – After four decades of waiting, the dawn of a new era in space exploration finally began with the dawn liftoff of NASA’s first Orion spacecraft on Friday, Dec. 5, 2014.

The picture perfect liftoff of Orion on its inaugural unmanned test flight relit the path to send humans beyond low Earth orbit for the first time since the launch of Apollo 17 on NASA’s final moon landing mission on Dec. 7, 1972.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Orion soared to space atop a United Launch Alliance Delta IV Heavy rocket at 7:05 a.m. EST from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

Enjoy the spectacular launch photo gallery from my fellow space journalists and photographers captured from various up close locations ringing the Delta launch complex.

67362_1507407749532079_1400751375240688366_n

Tens of thousands of spectators descended upon the Kennedy Space Center to be an eyewitness to history and the new space era – and they were universally thrilled.

Orion is the first human rated spacecraft to fly beyond low Earth orbit since Apollo 17 and was built by prime contractor Lockheed Martin.

10623672_1507407529532101_2295273501116938835_o

10344383_1507407539532100_7969689180969692155_o

The EFT-1 mission was a complete success.

The Orion program began about a decade ago.

America’s astronauts flying aboard Orion will venture farther into deep space than ever before – beyond the Moon to Asteroids, Mars and other destinations in our Solar System starting around 2020 or 2021 on Orion’s first crewed flight atop NASA’s new monster rocket – the SLS – concurrently under development.

1909510_10204709397868312_6000402173516112643_o

544947_10205270421179290_3522729129561283620_n

Watch for Ken’s ongoing Orion coverage from onsite at the Kennedy Space Center about the historic launch on Dec. 5.

Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.

Ken Kremer

1556432_10152535281502358_8249788738009004794_o

10818397_10152533860107358_4165018015924567588_o

10846045_10205270942192315_2996680947459947271_n

10846147_10205270417619201_4265473521206996346_n

10846488_864699793560364_3321837170085673485_n

10565273_910004025690112_7567901707640800198_n

Apollo 17 launch on Dec. 7, 1972. Credit: Julian Leek
Apollo 17 launch on Dec. 7, 1972. Credit: Julian Leek

1506827_10204422300109282_7367959124543755021_n

10362621_10202151736073421_1135789633135700041_n

10845986_10202153042506081_798115921998272984_n

10430851_10205613710411767_4576755758759417739_n

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com
Orion at dawn moments before liftoff on Dec. 5, 2014.   Credit: Ken Kremer - kenkremer.com
Orion at dawn moments before liftoff on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com

Moon Over Orion Heralds Start of NASA’s Human Road to Mars

The moon appears above NASA's Orion EFT-1 spacecraft in the Kennedy Space Center area as its set to soar to space atop a Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida ahead of launch set for Dec. 4, 2014. Credit: Ken Kremer - kenkremer.com

KENNEDY SPACE CENTER, FL – This week’s appearance of the Moon over the Kennedy Space Center marks the perfect backdrop heralding the start of NASA’s determined push to send Humans to Mars by the 2030s via the agency’s new Orion crew capsule set to soar to space on its maiden test flight in less than two days.

Orion is the first human rated vehicle that can carry astronauts beyond low Earth orbit on voyages to deep space in more than 40 years.

Top managers from NASA, United Launch Alliance (ULA), and Lockheed Martin met on Tuesday, Dec. 2, and gave the “GO” to proceed toward launch after a thorough review of all systems related to the Orion capsule, rocket, and ground operation systems at the launch pad at the Launch Readiness Review (LRR), said Mark Geyer at a NASA media briefing on Dec. 2.

A new countdown display has been constructed in the place of the former analog countdown clock at the Press Site at NASA's Kennedy Space Center in Florida for Orion’s first launch. The display is a modern, digital LED display akin to stadium monitors. It allows television images to be shown along with numbers.  Note former shuttle launch pad 39A in the background above clock.   Credit: Ken Kremer – kenkremer.com
A new countdown display has been constructed in the place of the former analog countdown clock at the Press Site at NASA’s Kennedy Space Center in Florida for Orion’s first launch slated for Dec. 4, 2014. The display is a modern, digital LED display akin to stadium monitors. It allows television images to be shown along with numbers. Note former shuttle launch pad 39A in the background above clock. Credit: Ken Kremer – kenkremer.com

Orion is slated to lift off on a United Launch Alliance Delta IV Heavy rocket on its inaugural test flight to space on the uncrewed Exploration Flight Test-1 (EFT-1) mission at 7:05 a.m. EST on December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

America’s astronauts flying aboard Orion will venture farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System starting around 2020 or 2021 on Orion’s first crewed flight atop NASA’s new monster rocket – the SLS – concurrently under development.

NASA Administrator Charles Bolden officially unveils world’s largest welder to start construction of core stage of NASA's Space Launch System (SLS) rocket at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. SLS will be the world’s most powerful rocket ever built.  Credit: Ken Kremer - kenkremer.com
NASA Administrator Charles Bolden officially unveils world’s largest welder to start construction of core stage of NASA’s Space Launch System (SLS) rocket at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. SLS will be the world’s most powerful rocket ever built. Credit: Ken Kremer – kenkremer.com

The current weather forecast states the launch is 60 percent “GO” for favorable weather condition at the scheduled liftoff time of at 7:05 a.m. on Dec. 4, 2014.

The launch window extends for 2 hours and 39 minutes.

The two-orbit, four and a half hour Orion EFT-1 flight around Earth will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

EFT-1 will test the rocket, second stage, and jettison mechanisms, as well as avionics, attitude control, computers, and electronic systems inside the Orion spacecraft.

Orion atop Delta 4 Heavy Booster.   Credit: NASA/Kim Shiflett
Orion atop Delta 4 Heavy Booster. Credit: NASA/Kim Shiflett

Then the spacecraft will carry out a high speed re-entry through the atmosphere at speeds approaching 20,000 mph and scorching temperatures near 4,000 degrees Fahrenheit to test the heat shield, before splashing down for a parachute assisted landing in the Pacific Ocean.

NASA TV will provide several hours of live Orion EFT-1 launch coverage with the new countdown clock – starting at 4:30 a.m. on Dec. 4.

Orion’s move to Launch Complex-37. Credit: Mike Killian
Orion’s move to Launch Complex-37. Credit: Mike Killian

Watch for Ken’s ongoing Orion coverage and he’ll be onsite at KSC in the days leading up to the historic launch on Dec. 4.

Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.

Ken Kremer
………….
Learn more about Orion, SpaceX, Antares, NASA missions, and more at Ken’s upcoming outreach events:

Dec 1-5: “Orion EFT-1, SpaceX CRS-5, Antares Orb-3 launch, Curiosity Explores Mars,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37.   Credit: Ken Kremer/kenkremer.com
Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37. Credit: Ken Kremer/kenkremer.com

Cool Infographics Explain 8 Key Events on Orion’s EFT-1 Test Flight

Orion flight test profile for the Exploration Flight Test-1 (EFT-1) launching on Dec. 4, 2014. Credit: NASA

After moving out to the launch pad earlier this week, NASA’s first Orion spacecraft was hoisted atop the most powerful rocket in the world and awaits blastoff from Cape Canaveral, Florida, in early December on a critical test flight that will pave the way for human missions to deep space for the first time in more than four decades since NASA’s Apollo moon landing missions ended in 1972.

NASA’s cool new set of infographics above and below explain 8 key events on Orion’s Exploration Flight Test-1 (EFT-1) mission and its first trip to orbit and back.

Orion will lift off on a Delta IV Heavy rocket on its inaugural test flight to space on the uncrewed EFT-1 mission at 7:05 a.m. EST on December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

The two-orbit, four and a half hour Orion EFT-1 flight around Earth will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

Launch - It’s going to be loud. It’s going to be bright. It’s going to be smoky. Engines are fired, the countdown ends and Orion lifts off into space atop the United Launch Alliance Delta IV Heavy rocket from the launch pad at Cape Canaveral in Florida.  Credit: NASA
Launch – It’s going to be loud. It’s going to be bright. It’s going to be smoky. Engines are fired, the countdown ends, and Orion lifts off into space atop the United Launch Alliance Delta IV Heavy rocket from the launch pad at Cape Canaveral in Florida. Credit: NASA

EFT-1 will test the rocket, second stage, jettison mechanisms, as well as avionics, attitude control, computers, and electronic systems inside the Orion spacecraft.

Then the spacecraft will carry out a high speed re-entry through the atmosphere at speeds approaching 20,000 mph and scorching temperatures near 4,000 degrees Fahrenheit to test the heat shield, before splashing down for a parachute assisted landing in the Pacific Ocean.

Exposure - It’s time to fly! The protective panels surrounding the service module are jettisoned and the launch abort system separates from the spacecraft. Credit: NASA
Exposure – It’s time to fly! The protective panels surrounding the service module are jettisoned and the launch abort system separates from the spacecraft. Credit: NASA
Re-ignition - Orbit 1 is complete! The upper stage will now fire up again to propel Orion to an altitude of 3,600 miles during its second trip around Earth. Credit: NASA
Re-ignition – Orbit 1 is complete! The upper stage will now fire up again to propel Orion to an altitude of 3,600 miles during its second trip around Earth. Credit: NASA
Separation - It’s now time to prepare for reentry. The service module and upper stage separate so that only the crew module will return to Earth. Credit: NASA
Separation – It’s now time to prepare for reentry. The service module and upper stage separate so that only the crew module will return to Earth. Credit: NASA
Orientation - Orion’s first flight will be uncrewed, but that doesn’t mean we can allow Orion to return to Earth upside down. This test flight will help us test the control jets to ensure that they can orient the capsule in the correct reentry position. Credit: NASA
Orientation – Orion’s first flight will be uncrewed, but that doesn’t mean we can allow Orion to return to Earth upside down. This test flight will help us test the control jets to ensure that they can orient the capsule in the correct reentry position. Credit: NASA
Heating - Things are heating up as Orion slams into the atmosphere at almost 20,000 mph and encounters temperatures near 4,000 degrees F.  Credit: NASA
Heating – Things are heating up as Orion slams into the atmosphere at almost 20,000 mph and encounters temperatures near 4,000 degrees F. Credit: NASA
Deploy - After initial air friction slows the capsule from 20,000 mph, Orion will still be descending at 300 mph—too fast for a safe splashdown. A sequence of parachute deployments will create drag to further slow the spacecraft to a comfortable 20 mph. Credit: NASA
Deploy – After initial air friction slows the capsule from 20,000 mph, Orion will still be descending at 300 mph—too fast for a safe splashdown. A sequence of parachute deployments will create drag to further slow the spacecraft to a comfortable 20 mph. Credit: NASA
Landing = Orion will splashdown in the Pacific Ocean off the coast of Baja California, where it will be recovered with help from the United States Navy. Credit: NASA
Landing – Orion will splashdown in the Pacific Ocean off the coast of Baja California, where it will be recovered with help from the United States Navy. Credit: NASA

Here’s what Orion’s ocean splashdown and recovery by Navy divers will look like:

US Navy divers on four boats attached tow lines and to the Orion test capsule and guide it to the well deck on the USS Arlington during Aug. 15 recovery test Norfolk Naval Base, VA.  Credit: Ken Kremer/kenkremer.com
US Navy divers on four boats attached tow lines to the Orion test capsule and guide it to the well deck on the USS Arlington during Aug. 15, 2013, recovery test at Norfolk Naval Base, VA. Credit: Ken Kremer/kenkremer.com

Orion is NASA’s next generation human rated vehicle that will carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.

The United Launch Alliance Delta IV Heavy rocket is the world’s most powerful rocket. The triple barreled Delta IV Heavy booster is the only rocket sufficiently powerful to launch the 50,000 pound Orion EFT-1 spacecraft to orbit.

The first stage of the mammoth Delta IV Heavy generates some 2 million pounds of liftoff thrust.

Watch for Ken’s Orion coverage, and he’ll be at KSC for the historic launch on Dec. 4.

Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.

Ken Kremer

Making the Moon: The Practice Crater Fields of Flagstaff, Arizona

Apollo 15 astronauts David Scott and James Irwin practice LRV operations in Arizona, Nov. 2 1970 (Credit: NASA. Research by J.L. Pickering)

Between the years of 1969 and 1972 the astronauts of the Apollo missions personally explored the alien landscape of the lunar surface, shuffling, bounding, digging, and roving across six sites on the Moon. In order to prepare for their off-world adventures though, they needed to practice extensively here on Earth so they would be ready to execute the long laundry lists of activities they were required to accomplish during their lunar EVAs. But where on Earth could they find the type of landscape that resembles the Moon’s rugged, dusty, and — most importantly — cratered terrain?

Enter the Cinder Lakes Crater Fields of Flagstaff, Arizona.

The Cinder Lakes Crater Fields northeast of Flagstaff, near the famous San Francisco peaks and just south of the Sunset Crater volcano, were used for Apollo-era training because of the inherently lunar-like volcanic landscape. LRV practice as well as hand tool geology and lunar morphology training were performed there, as well as ALSEP – Apollo Lunar Surface Experiment Package – placement and setup practice.

The photo above shows Apollo 15 astronauts Dave Scott and Jim Irwin driving a test LRV nicknamed Grover along the rim of a small “lunar crater.” (This particular exercise was performed on Nov. 2, 1970… 44 years ago today!)

Detonation of a "lunar crater" in 1967 (USGS)
Detonation of a “lunar crater” in 1967 (USGS)

Although the craters might look similar to the ones found on the Moon, they were actually created by the USGS in 1967 by digging holes and filling them with various amounts of explosives, which were detonated to simulate different-sized lunar impact craters. The human-made craters ranged in size from 5-40 feet (1.5-12 meters) in diameter.

The two crater field sites at Cinder Lakes were chosen because of the specific surface geology: a layer of basaltic cinders covering clay beds, left over from an eruption of the Sunset Crater volcano 950 years ago. After the explosions the excavated lighter clay material spread out from the blast craters and across the fields, like ejecta from actual meteorite impacts. A total of 497 craters were made within two sites comprising 2,000 square feet.

Detonations were done in series to simulate ejected debris from cratering events of different ages. And one of the areas of Cinder Lakes was designed to specifically replicate craters found within a particular region of the Apollo 11 Mare Tranquillitatis landing site.

Watch a contemporary educational film from the USGS showing the crater field detonations here. (HT to spaceflight archivist David S. F. Portree for the link.)

The completed Cinder Lakes Crater Field #1 in October 1967 (USGS)
The completed Cinder Lakes Crater Field #1 in October 1967 (USGS)

Today only the largest craters can be distinguished at all in the publicly-accessible Cinder Lakes field, which has become popular with ATV enthusiasts. But a smaller field, fenced off to vehicles, still contains many of the original craters used by Apollo astronauts, softened by time and weather but still visible.

A couple of other areas were used as lunar analogue training fields as well, such as the nearby Merriam Crater and Black Canyon fields — the latter of which is now covered by a housing development. Geology field training exercises by Apollo astronauts were also performed at locations in Texas, New Mexico, Nevada, Oregon, Alaska, Idaho, Iceland, Mexico, the Grand Canyon, and the lava fields of Hawaii. But only in Arizona were actual craters made to specifically simulate the Moon!

Read more about the Cinder Lakes Crater Field in a presentation document (my main article source) by LPI’s Dr. David Kring, and you can find more recent photos of the Crater Lakes sites on this page by LPI’s Jim Scotti.

Top photo research: J.L. Pickering. Source: The Project Apollo Image Archive. 

Apollo 12 astronauts Pete Conrad and Alan Bean during geology training at Cinder Lakes on October 10, 1969 (NASA)
Apollo 12 astronauts Pete Conrad and Alan Bean during geology training at Cinder Lakes on October 10, 1969 (NASA)

Earth Dodges a Bullet — New Radar Images of Asteroid 2014 SC324

Goldstone delay-Doppler images of 2014 SC324 obtained on October 25. The images span an interval of about 45 minutes and show considerable rotation by this object, which has an irregular and elongated shape. Credit: NASA/JPL

Looks like we dodged a bullet. A bullet-shaped asteroid that is. The 70-meter Goldstone radar dish, part of NASA’s Deep Space Network, grabbed a collage of photos of Earth-approaching asteroid 2014 SC324 during its close flyby last Friday October 24. These are the first-ever photos of the space rock which was discovered September 30 this year by the Mt. Lemmon Survey. The level of detail is amazing considering that the object is only about 197 feet (60-meters) across.  You can also see how incredibly fast it’s rotating – about 30-45 minutes for a one spin.

A cropped version of the photo to more clearly see the asteroid's shape. 2014 SC324 passed just 1.5 lunar distances from Earth last week. Credit: NASA/JPL
A cropped version of the photo to more clearly see the asteroid’s shape. 2014 SC324 passed just 1.5 lunar distances from Earth last week. Credit: NASA/JPL

In the cropped version, the shape is somewhat clearer with the asteroid appearing some four times longer than wide. 2014 SC324 belongs to the Apollo asteroid class, named for 1862 Apollo discovered in 1932 by German astronomer Karl Reinmuth. Apollo asteroids follow orbits that occasionally cross that of Earth’s, making them a potential threat to our planet.  The famed February 15, 2013 Chelyabinsk fireball, with an approximate pre-atmospheric entry size of 59 feet (18-m), belonged to the Apollo class.

Three classes of asteroids that pass near Earth or cross its orbit are named for the first member discovered — Apollo, Aten and Amor. Apollo asteroids like 2014 SC324 routinely cross Earth’s orbit, Atens also cross but have different orbital characteristics and Amors cross Mars’ orbit but miss Earth’s. Credit: ESA
Three classes of asteroids that pass near Earth or cross its orbit are named for the first member discovered — Apollo, Aten and Amor. Apollo asteroids like 2014 SC324 routinely cross Earth’s orbit, Atens also cross but have different orbital characteristics and Amors cross Mars’ orbit but miss Earth’s. Credit: ESA

Lance Benner and colleagues at Goldstone also imaged another Apollo asteroid that passed through our neighborhood on October 19 called 2014 SM143. This larger object, estimated at around 650 feet (200-m) across, was discovered with the Pan-STARRS 1 telescope on Mt. Haleakala in Hawaii on September 17.  Tell me we’re not some shiny ball on a solar system-sized pool table where the players fortunately miss their shot … most of the time.