How Do We Terraform Saturn’s Moons?

Continuing with our “Definitive Guide to Terraforming“, Universe Today is happy to present our guide to terraforming Saturn’s Moons. Beyond the inner Solar System and the Jovian Moons, Saturn has numerous satellites that could be transformed. But should they be?

Around the distant gas giant Saturn lies a system of rings and moons that is unrivaled in terms of beauty. Within this system, there is also enough resources that if humanity were to harness them – i.e. if the issues of transport and infrastructure could be addressed – we would be living in an age a post-scarcity. But on top of that, many of these moons might even be suited to terraforming, where they would be transformed to accommodate human settlers.

As with the case for terraforming Jupiter’s moons, or the terrestrial planets of Mars and Venus, doing so presents many advantages and challenges. At the same time, it presents many moral and ethical dilemmas. And between all of that, terraforming Saturn’s moons would require a massive commitment in time, energy and resources, not to mention reliance on some advanced technologies (some of which haven’t been invented yet).

Continue reading “How Do We Terraform Saturn’s Moons?”

Why Don’t We Search for Different Life?

If we really want to find life on other worlds, why do we keep looking for life based on carbon and water? Why don’t we look for the stuff that’s really different?

In the immortal words of Arthur C. Clarke, “Two possibilities exist: either we are alone in the Universe or we are not. Both are equally terrifying.”

I’m seeking venture capital for a Universal buffet chain, and I wondering if I need to include whatever the tentacle equivalent of forks is on my operating budget. If there isn’t any life, I’m going to need to stop watching so much science fiction and get on with helping humanity colonize space.

Currently, astrobiologists are hard at work searching for life, trying to answer this question. The SETI Institute is scanning radio signals from space, hoping to catch a message. Since humans use radio waves, maybe aliens will too. NASA is using the Curiosity Rover to search for evidence that liquid water existed on the surface of Mars long enough for life to get going. The general rule is if we find liquid water on Earth, we find life. Astronomers are preparing to study the atmospheres of extrasolar planets, looking for gasses that match what we have here on Earth.

Isn’t this just intellectually lazy? Do our scientists lack imagination? Aren’t they all supposed to watch Star Trek How do we know that life is going to look anything like the life we have on Earth? Oh, the hubris!

Who’s to say aliens will bother to communicate with radio waves, and will transcend this quaint transmission system and use beams of neutrinos instead. Or physics we haven’t even discovered yet? Perhaps they talk using microwaves and you can tell what the aliens are saying by how your face gets warmed up. And how do we know that life needs to depend on water and carbon? Why not silicon-based lifeforms, or beings which are pure energy? What about aliens that breathe pure molten boron and excrete seahorse dreams? Why don’t these scientists expand their search to include life as we don’t know it? Why are they so closed-minded?

Viking Lander
In 1976, two Viking spacecraft landed on Mars. The image is of a model of the Viking lander, along with astronomer and pioneering astrobiologist Carl Sagan. Each lander was equipped with life detection experiments designed to detect life based on its metabolic activities.
Credits: NASA/Jet Propulsion Laboratory, Caltech

The reality is they’re just being careful. A question this important requires good evidence. Consider the search for life on Mars. Back in the 1970s, the Viking Lander carried an experiment that would expose Martian soil to water and nutrients, and then try to detect out-gassing from microbes. The result of the experiment was inconclusive, and scientists still argue over the results today. If you’re going to answer a question like this, you want to be conclusive. Also, getting to Mars is pretty challenging to begin with. You probably don’t want to “half-axe” your science.

The current search for life is incremental and exhaustive. NASA’s Spirit and Opportunity searched for evidence that liquid water once existed on the surface of Mars. They found evidence of ancient water many times, in different locations. The fact that water once existed on the surface of Mars is established. Curiosity has extended this line of research, looking for evidence that water existed on the surface of Mars for long periods of time. Long enough that life could have thrived. Once again, the rover has turned up the evidence that scientists were hoping to see. Mars was once hospitable for life, for long periods of time. The next batch of missions will actually search for life, both on the surface of Mars and bringing back samples to Earth so we can study them here.

The search for life is slow and laborious because that’s how science works. You start with the assumption that since water is necessary for life on Earth, it makes sense to just check other water in the Solar System. It’s the low hanging fruit, then once you’ve exhausted all the easy options, you get really creative.

An illustration of a Titanic lake by Ron Miller. All rights reserved. Used with permission.
An illustration of a Titanic lake by Ron Miller. All rights reserved. Used with permission.

Scientists have gotten really creative about how and where they could search for life. Astrobiologists have considered other liquids that could be conducive for life. Instead of water, it’s possible that alternative forms of life could use liquid methane or ammonia as a solvent for its biological processes. In fact, this environment exists on the surface of Titan. But even if we did send a rover to Titan, how would we even know what to look for?

We understand how life works here, so we know what kinds of evidence to pursue. But kind of what evidence would be required to convince you there’s life as you don’t understand it? Really compelling evidence.
Go ahead and propose some alternative forms of life and how you think we’d go searching for it in the comments.

Thanks for watching! Never miss an episode by clicking subscribe. Our Patreon community is the reason these shows happen. We’d like to thank Kuri the Vegan Traveller and Craig Hayes, and the rest of the members who support us in making great space and astronomy content. Members get advance access to episodes, extras, contests, and other shenanigans with Jay, myself and the rest of the team. Want to get in on the action? Click here.

Astronauts Safely Back inside US Space Station Segment after False Ammonia Leak Alarm

Nearly twelve hours after the threat of a leak of toxic ammonia forced the crew into a middle of the night evacuation from the US side of the International Space Station this morning (Jan. 14) and a hatch closure, top level managers from the partner space agencies gave the all clear and allowed the astronauts and cosmonauts to reopen access to the American portion of the orbiting outpost.

The six person crew hailing from the US, Italy and Russia were allowed to open the sealed hatch to the U.S. segment later this afternoon after it was determined that the ammonia leak was quite fortunately a false alarm.

No ammonia leak was actually detected. But the crew and mission control had to shut down some non essential station systems on the US segment in the interim.

All the Expedition 42 crew members were safe and in good health and never in danger, reported NASA.

The station crews and mission control teams must constantly be prepared and train for the unexpected and how to deal with potential emergencies, such as today’s threat of a serious chemical leak.

After a thorough review of the situation by the International Space Station mission management team, the crew were given the OK by flight controllers to head back.

They returned inside at 3:05 p.m. EST. Taking no chances, they wore protective masks and sampled the cabin atmosphere and reported no indications of any ammonia.

Fears that a leak had been detected resulted from the sounding of an alarm at around 4 a.m. EST.

The alarm forced Expedition 42 station commander Barry Wilmore and Flight Engineer Terry Virts of NASA and Flight Engineer Samantha Cristoforetti of the European Space Agency to don protective gas masks and move quickly into the Russian segment, sealing the hatch behind them to the US segment.

Inside the Russian segment, they joined the remainder of Expedition 42, namely cosmonauts Aleksandr Samokutyayev, Yelena Serova, and Anton Shkaplerov from Russia, also living and working aboard the ISS and rounding out the crew of four men and two women.

he International Space Station as seen by the departing STS-134 crew aboard space shuttle Endeavour in May 2011. Credit: NASA
The International Space Station as seen by the departing STS-134 crew aboard space shuttle Endeavour in May 2011. US segment on top in this view. Credit: NASA

“The alarm is part of the environmental systems software on the station designed to monitor the cabin’s atmosphere. At the same time, the station’s protection software shut down one of two redundant cooling loops (Thermal Control System Loop B),” NASA said in an update.

Ammonia is a toxic substance used as a coolant in the stations complex cooling system that is an essential requirement to continued operation of the station.

Ammonia is a gas at room temperature that is extremely dangerous to inhale or when it comes in contact with skin, eyes and internal organs.

Precautions must be taken if a leak is feared in a confined space such as the ISS. It has about the same habitable volume as a four bedroom house.

As a professional chemist, I’ve worked frequently with ammonia in research and development labs and manufacturing plants and know the dangers firsthand. It can cause severe burns and irritations and worse.

There have been prior ammonia leaks aboard the ISS facility that forced a partial evacuation similar to today’s incident.

The ISS has been continuously occupied by humans for 15 years.

In the case of a life threatening emergency, the crew can rapidly abandon the station aboard the two docked Russian Soyuz capsules. They hold three persons each and serve as lifeboats.

Fortunately, the perceived ammonia leak this morning was not real and apparently was caused by a false alarm.

“This morning’s alarm is suspected to have been caused by a transient error message in one of the station’s computer relay systems, called a multiplexer-demultiplexer. A subsequent action to turn that relay box off and back on cleared the error message and the relay box is reported by flight controllers to be in good operating condition,” according to a NASA statement.

“Meanwhile, flight controllers are continuing to analyze data in an effort to determine what triggered the alarm that set today’s actions in motion.”

“Work to reactivate cooling loop B on the station will continue throughout the night and into the day Thursday. The crew members are expected to resume a normal complement of research activities on Thursday as well.”

The SpaceX Dragon is attached to the Harmony module. Credit: NASA TV
This view shows the US side of the ISS that was evacuated today, Jan. 14, 2015, by the crew due to possible ammonia leak. The SpaceX CRS-5 Dragon is attached to the Harmony module. Credit: NASA TV

The evacuation came just two days after a commercial SpaceX Dragon cargo freighter successfully rendezvoused and berthed at the station on Monday, Jan. 12.

The crew had just opened the hatch to Dragon and begun unloading the goodies stored aboard.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

ISS Expedition 42. Credit: NASA/ESA/Roscosmos
ISS Expedition 42. Credit: NASA/ESA/Roscosmos

What’s Inside Jupiter?

Jupiter is like a jawbreaker. Dig down beneath the swirling clouds and you’ll pass through layer after layer of exotic forms of hydrogen. What’s down there, deep within Jupiter?

What’s inside Jupiter? Is it chameleons? Candy? Cake? Cheddar? Chemtrails? No one knows. No one can ever know.

Well, that’s not entirely true… or even remotely true. Jupiter is the largest planet in the Solar System and two and a half times the mass of the other planets combined. It’s a gas giant, like Saturn, Uranus, and Neptune. It’s almost 90% hydrogen and 10% helium, and then other trace materials, like methane, ammonia, water and some other stuff. What would be a gas on Earth behaves in very strange ways under Jupiter’s massive pressure and temperatures.

So what’s deep down inside Jupiter? What are the various layers and levels, and can I keep thinking of it like a jawbreaker? At the very center of Jupiter is its dense core. Astronomers aren’t sure if there’s a rocky region deep down inside. It’s actually possible that there’s twelve to forty five Earth masses of rocky material within the planet’s core. Now this could be rock, or hydrogen and helium under such enormous forces that it just acts that way. But you couldn’t stand on it. The temperatures are 35,000 degrees C. The pressures are incomprehensible.

Surrounding the core is a vast region made up of hydrogen. But it’s not a gas. The pressure and temperature transforms the hydrogen into an exotic form of liquid metallic hydrogen, similar to the liquid mercury you’d see in a thermometer. This metallic hydrogen region turns inside the planet, and acts like an electric dynamo. Similar to our planet’s own iron core, this gives the planet a powerful magnetic field.

The next level up is still liquid hydrogen, but the pressure’s lower, so it’s not metallic any more. And then above this is the planet’s atmosphere. The upper layers of Jupiter’s atmosphere is the only part we can see. Those bands on the planet are clouds of ammonia that rotate around the planet in alternating directions. The lighter color zones are colder ammonia ice upwelling from below. Here’s the exciting part. Astronomers aren’t sure what the darker regions are.

This animated gif shows Voyager 1's approach to Jupiter during a period of over 60 Jupiter days in 1979.  Credit: NASA.
This animated gif shows Voyager 1’s approach to Jupiter during a period of over 60 Jupiter days in 1979. Credit: NASA.

Still think you want to descend into Jupiter, to try and walk on its rocky interior? NASA tried that. In order to protect Jupiter’s moons from contamination, NASA decided to crash the Galileo spacecraft into the planet at the end of its mission. It only got point two percent of the way down through Jupiter’s radius before it was completely destroyed.

Jupiter is a remarkably different world from our own. With all that gravity, normally lightweight hydrogen behaves in completely exotic ways. Hopefully in the future we’ll learn more about this amazing planet we share our Solar System with.

What do you think? Is there a rocky core deep down inside Jupiter?

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

Comet ISON Hosted A Rare Kind Of Nitrogen, Hinting At Reservoirs In Young Solar System

Comet ISON — that bright comet last year that broke up around Thanksgiving weekend — included two forms of nitrogen in its icy body, according to newly released observations from the Subaru Telescope.

Of the two types found, the discovery of isotope 15NH2 was the first time it’s ever been seen in a comet. Further, the observations from the Japanese team of astronomers show “there were two distinct reservoirs of nitrogen [in] the massive, dense cloud … from which our Solar System may have formed and evolved,” stated the National Astronomical Observatory of Japan.

Besides being pretty objects to look at, comets are considered valuable astronomical objects because they’re a sort of time capsule of conditions early in the universe. The “fresh” comets are believed to come from a vast area of icy bodies called the Oort Cloud, a spot that has been relatively untouched since the solar system formed about 4.6 billion years ago. Spying elements inside of comets can give clues as to what was present in our neighborhood when the sun and planets were just coming to be.

“Ammonia (NH3) is a particularly important molecule, because it is the most abundant nitrogen-bearing volatile (a substance that vaporizes) in cometary ice and one of the simplest molecules in an amino group (–NH2) closely related to life. This means that these different forms of nitrogen could link the components of interstellar space to life on Earth as we know it,” NAOJ stated.

You can read more details about the finding at the NAOJ website, or in Astrophysical Journal Letters.

Watch Spacewalkers Friday As They Install Earth Livestream Camera On Station

For all you Earth observation geeks out there, we have some good news — two Russian astronauts are going to install a camera on Friday (Dec. 27) that will beam live images of Earth back to your browser.

The UrtheCast camera is the headline task for Expedition 38 astronauts Oleg Kotov and Sergey Ryazanskiy to perform, on top of installing a foot restraint and doing some equipment swapouts. This spacewalk, by the way, is not related in any way to the two successful contingency ones earlier this week to replace a faulty pump on station.

The spacewalk is supposed to start at 8 a.m. EST (1 p.m. UTC) and will be carried live on NASA Television, which you can view in the media player above or at this alternate link. The spacewalk is scheduled for seven hours, but could be longer or shorter as events arise.

“Imagine you have a nearly live Google Earth, but it isn’t four-year-old data – you have data that is being refreshed all the time, with videos coming down over interesting areas where interesting events are going on, showing you what is changing, what is going on,” said George Tyc, the chief technology officer at UrtheCast, in an interview with Universe Today earlier this year.

“What we really hope to pull off is to change the paradigm, get the everyday person interacting and seeing the data coming down from space to see the Earth and how it is evolving over time in a way that isn’t available right now.”

Read more details about UrtheCast in this past Universe Today story.

NASA astronaut Mike Hopkins during his first spacewalk on Dec. 21, 2013 during Expedition 38. He tweeted the next day: "Wow . . .  can't believe that is me yesterday. Wish I could find the words to describe the experience, truly amazing." Credit: NASA
NASA astronaut Mike Hopkins during his first spacewalk on Dec. 21, 2013 during Expedition 38. He tweeted the next day: “Wow . . . can’t believe that is me yesterday. Wish I could find the words to describe the experience, truly amazing.” Credit: NASA

It’s been a busy week for spacewalkers on station as Rick Mastracchio and Mike Hopkins successfully replaced a pump that shut down two weeks ago and crippled one of the station’s two cooling loops for regulating the temperature of systems on station. With that work completed Tuesday (Dec. 24), a NASA update today (Dec. 26) said systems are slowly coming back online.

“Early on Christmas Day, the heat exchangers for the Destiny laboratory, the Harmony and Tranquility nodes and the Japanese Kibo laboratory were reintegrated to enable experiments racks and other systems affected by the partial Cooling Loop A shutdown Dec. 11 to come back on line,” NASA stated.

“The Columbus laboratory heat exchanger will remain down until the European Space Agency, at its own request, conducts that module’s integration next week when personnel return from the holiday.”

Astronauts Brave Brief Ammonia Snowstorm As They Conclude Fix To Space Station

Toxic snowflakes in space were just one obstacle astronauts faced down today (Dec. 24) as they successfully replaced an ammonia pump that will, if all goes to plan, put the space station back in full service in a few hours.

“They’re just completely surrounding us now,” radioed NASA astronaut Rick Mastracchio of the ammonia flakes as the astronauts clipped four fluid lines into place on to the spare pump. NASA said the ammonia was just residual fluid and not indicative of a leak. “Some little ones, some big ones,” he added.

Within a few minutes, however, the ammonia dissipated. Some flakes did strike the spacesuits of Mastracchio and fellow NASA spacewalker Mike Hopkins, causing NASA to do a modified decontamination procedure where the astronauts stayed in a vacuum for a few extra minutes inside the airlock. (The sun’s heat bakes off ammonia over time, and the crew was outside long enough for most ammonia to dissipate, NASA said.)

The spacewalk completed with no further drama at 7 hours and 30 minutes, earning high praise for the participating astronauts from Mission Control in Houston.

“It’s the best Christmas ever,” radioed CapCom and NASA astronaut Doug Wheelock from the ground as the spacewalkers entered the International Space Station’s Quest airlock at the end of the repair job. “We got it,” Mastracchio responded.

NASA astronaut Doug Wheelock (left) and Japanese astronaut Aki Hoshide served as CapComs during two tricky ammonia pump replacements in December 2013. Wheelock assisted Expedition 38 spacewalking astronauts Mike Hopkins and Rick Mastracchio, while Hoshide helped Japanese astronaut Koichi Wakata with robotic maneuvers. Credit: NASA TV (screenshot)
NASA astronaut Doug Wheelock (left) and Japanese astronaut Aki Hoshide served as CapComs during two tricky ammonia pump replacements in December 2013. Wheelock assisted Expedition 38 spacewalking astronauts Mike Hopkins and Rick Mastracchio, while Hoshide helped Japanese astronaut Koichi Wakata with robotic maneuvers. Credit: NASA TV (screenshot)

Preliminary tests show the spare pump is working perfectly. The pump is a welcome present for the six-person Expedition 38 crew, which saw a reduction in science and backup systems for two weeks after a valve in the last pump failed, causing one of the station’s two cooling loops to shut down automatically. The loops are needed to regulate the temperatures of electronics and systems on station.

The Expedition 38 crew was so quick with the repair that they finished the job in two spacewalks instead of the planned three. The astronauts fell behind the timeline today as they struggled with some of the fluid connections to the new pump, but the final steps — putting the electrical connections in place — took just minutes. The pump was brought from another location on station today, and installed into its permanent spot to help ammonia flow through the cooling system.

Anywhere between hundreds and thousands of people at NASA and international partners scrambled to put spacewalks together to fix the cooling problem after it happened. Wheelock, himself a veteran of a tricky ammonia pump repair in 2010, communicated with the spacewalkers. Japanese astronaut Aki Hoshide filled the other CapCom slot, helping Japanese astronaut Koichi Wakata who handled robotics in orbit.

Japanese astronaut Koichi Wakata controlled Canadarm2 during two spacewalks to replace a faulty ammonia pump in December 2013. Credit: NASA TV (screenshot)
Japanese astronaut Koichi Wakata controlled Canadarm2 during two spacewalks to replace a faulty ammonia pump in December 2013. Credit: NASA TV (screenshot)

Mastracchio marked his eighth spacewalk with today’s repair while Hopkins, who rode Canadarm2 for the first time in a last-minute decision, was on his second. As with a spacewalk on Saturday (Dec. 21), the astronauts reported no helmet water leaks — comforting words for agency officials who put in new procedures and parts after an incident in July. (Mastracchio experienced a water problem during repressurization Saturday that was unrelated to the first incident, and wore a backup suit today to let the primary one dry out.)

Should the ammonia pump work as planned, this clears the way for the Russians to do a spacewalk Dec. 27 to install the Urthecast high-resolution camera that will beam live views of Earth, among other tasks. Expedition 38 has the day off tomorrow (Dec. 25), NASA TV added.

The only other Christmas Eve spacewalk in NASA history took place Dec. 24, 1999 during Hubble Space Telescope servicing mission STS-103. Another Christmas Eve milestone for NASA took place 45 years ago today, when the Apollo 8 crew made a now-famous broadcast while orbiting above the moon.

Watch Live As Astronauts Fix The Space Station Saturday

There’s a cooling problem on station, and two astronauts are ready to head outside to fix it. NASA astronauts Rick Mastracchio (a six-time spacewalker) and Mike Hopkins (a rookie) are expected to spend 6.5 hours “outside” starting at 7:10 a.m. EST (12:10 p.m. UTC) on Saturday. On robotics will be Japanese astronaut Koichi Wakata, who has operated every bit of robotics currently on station.

Click to watch Expedition 38’s crew action live above. (If for some reason the stream is not working, an alternate link is available here.) We’ll have full coverage of the spacewalk after it happens, too.

For a walkthrough of what’s going to happen, NASA handily provided a video that you can see below the jump. We also have links to all of our coverage so far.

In a nutshell, here’s what happened: a cooling loop shut down automatically on station Dec. 11 when the loop got too cold. NASA traced the problem to a faulty flow control valve inside of the pump. As agency officials prepared for a spacewalk just in case, NASA attempted to fix the valve and then control an alternate one from the ground.

However, the station is entering a time when there will be a lot of sun shining on it, making dockings and spacewalks difficult. To be prudent, NASA decided to do a spacewalk now and replace the pump. To keep the astronauts safe if another spacesuit leak happens again, the agency has introduced soaker pads and snorkels to the spacesuits.

Here’s what’s going to happen during the three spacewalks that are scheduled for Saturday, Monday (Dec. 23) and if necessary, Wednesday (Dec. 25), according to lead U.S. Spacewalk Officer Allison Bolinger:

After Facing Down Ammonia Leak, This Astronaut Will Help Crew During Spacewalks

When you learned to drive a car for the first time, remember how comforting it was to have an experienced driver beside you, able to anticipate the hazards and keep you on schedule?

That’s surely how the Expedition 38 crew feels about one of the voices “on the line” as two astronauts prepare to venture outside to replace a crippled ammonia pump. One of the “CapComs” or people communicating with the crew on Saturday, Monday and Wednesday will be astronaut Doug Wheelock — who just happens to be known for co-replacing a broken ammonia tank himself in 2010. (The other CapCom is Japanese astronaut Aki Hoshide, who will chat through robotic procedures with Koichi Wakata).

Wheelock is the visible edge of hundreds — likely thousands — of people working feverishly at NASA and its international partners this past week to get the spacewalks ready through pool simulations, a virtual reality lab and other means. Several backup and non-critical space station systems are offline because of that pump, which has to regulate temperatures properly for vital electronics to work.

“I am their choreographer,” Wheelock told Universe Today of his plan for the astronauts. While spacewalkers Mike Hopkins and Rick Mastracchio already know what they are supposed to do when, Wheelock said he will be “their eyes and ears on the timeline.” If something needs to be stopped or changed, he’ll help them figure out what to do next.

NASA astronaut Doug Wheelock anchored to Canadarm2 during an August 2010 spacewalk. He and Tracy Caldwell Dyson ventured outside three times during Expedition 24 to swap out and replace a broken ammonia pump. Credit: NASA
NASA astronaut Doug Wheelock anchored to Canadarm2 during an August 2010 spacewalk. He and Tracy Caldwell Dyson ventured outside three times during Expedition 24 to swap out and replace a broken ammonia pump. Credit: NASA

Wheelock and fellow astronaut Tracy Caldwell Dyson had to spring into action themselves in August 2010. A pump in the same location broke, forcing space station systems offline and requiring them to go outside a few days later. With astronaut Shannon Walker piloting Canadarm2, the astronauts accomplished their tasks in three spacewalks — but encountered obstacles along the way.

During the first spacewalk, as Wheelock disconnected lines from the broken pump, he not only faced a pipe that wouldn’t let go, but a shower of ammonia snowflakes. That was “what got me on the EVA [extra-vehicular activity],” he recalled. That’s why NASA plans to lower the line pressure on the cooling system before the astronauts head outside this time. Normally the lines are pressurized at 360 pounds per square inch, but they’ll be lowered to 120 psi through commands from the ground.

Other “lessons learned” are more recent. Italian astronaut Luca Parmitano was wearing a NASA spacesuit in July when he experienced a water leak in his helmet, putting him at risk and terminating the spacewalk early. This will be the first spacewalk since that time. NASA believes it has replaced the part of the suit that failed, but the agency has new backups in place. Hopkins and Mastracchio will have soaker pads in their helmets as well as a “snorkel”-like device, or tube that will let them breathe oxygen from a different part of the suit if water flows into the helmet again.

Allison Bolinger, NASA's lead U.S. spacewalk officer, holds up a snorkel-like device that astronauts began using in spacesuits in December 2013. The pipe (modified from spacesuit parts) is supposed to be a backup if a helmet fills with water, as what occurred during a July 2013 spacewalk. Credit: NASA (YouTube/screenshot)
Allison Bolinger, NASA’s lead U.S. spacewalk officer, holds up a snorkel-like device that astronauts began using in spacesuits in December 2013. The pipe (modified from spacesuit parts) is supposed to be a backup if a helmet fills with water, as what occurred during a July 2013 spacewalk. Credit: NASA (YouTube/screenshot)

So what are some key parts of the spacewalks to look for? Wheelock identified a few spots.

‘HAP’ check. That soaker pad is called a “helmet absorption pad”, and as a matter of course the astronauts will be asked to verify that the pad is not wet at the same time that they also check their gloves for tears (another lesson learned from a past spacewalk.) So you will hear Wheelock calling “HAP check” from time to time to the crew.

Unlatching and latching the ammonia connectors on the pumps. Because this is when leaks are most likely to occur — posing a risk to Mastracchio, who is performing the work — Wheelock is going to do a “challenge and response” procedure. He will read up the step, the astronaut will verify it and will do the work. There will be “a lot more chatter on the [voice] loop” during those times, Wheelock said, with everyone on the ground watching through Mastracchio’s head camera feed (visible at the front of the room) to see what is happening. “There will be a lot of people standing in Mission Control at that point,” he joked, himself included.

Leak procedures. If ammonia does start to shower out, Mastracchio will quickly close the valve and wait a few minutes as it could be just residual ammonia in the line. If that doesn’t work out, Mastracchio is trained on a procedure to attach a device to the front end of the connector and move a lever that prevents a cavity in the line from filling with ammonia. Then he can open the valve again, bleed out the ammonia that’s left over and keep going.

NASA astronaut Rick Mastracchio inspects two spacesuits to be used during spacewalks in December 2013. The spacewalks were to remove and replace a faulty ammonia pump. Credit: NASA TV
NASA astronaut Rick Mastracchio inspects two spacesuits to be used during spacewalks in December 2013. The spacewalks were to remove and replace a faulty ammonia pump. Credit: NASA TV

Decontamination procedures. The ammonia makes a distinctive “ping” when it hits the helmet, says Wheelock (who yes, heard that happen himself.) You can also see ammonia on the suit, he said, as it looks a bit like candle wax and obscures the stitching. All of which to say, NASA has procedures in place if the agency suspects or can confirm large amounts of ammonia got on Mastracchio’s suit. (Small amounts would essentially fleck off in the sun.) Hopkins, who will be out of the line of fire, can do a thorough inspection of Mastracchio and scrape off any ammonia with a warm metal tool — without hurting the suit underneath. The astronauts could also do a “bakeout” in the airlock — 30 minutes if suspected, an hour if confirmed — where they will sit with the hatch open and wait for any ammonia to sublimate off the suit. Once they close the hatch, the astronauts can verify if the ammonia is gone using Drager tubes, which have gold crystals inside that turn “purpleish blue” in the presence of ammonia, Wheelock said.

Margin calls. Because NASA needs to make sure the astronauts have 30 to 60 minutes to decontaminate at the end of their spacewalks, officials will preserve a margin of oxygen available for the astronauts to walk through that work. So it’s possible the agency may terminate a spacewalk before all tasks are completed just because they need that bit of margin at the end.

To learn more, Wheelock has been answering questions occasionally on his Twitter account from followers, and you can read through what he posts when he finds the time. Universe Today will also cover the spacewalks (currently planned for Saturday, Monday and Wednesday) as they occur.

Spacewalk, Or Backup Valve? NASA Works The Space Station Cooling Problem

While Expedition 38 astronauts Rick Mastracchio and Michael Hopkins get their spacesuits and the Quest airlock ready in case they need to do a spacewalk to fix a cooling problem on board the station, NASA engineers have come up with an alternate proposal that could allow an interim fix from the ground.

A faulty flow control valve inside an external pump caused one of the station’s two main cooling loops to shut down automatically on Wednesday when the loop became too cold. This forced NASA to power down noncritical systems and some experiments as they moved the most needed systems on to a single loop.

After playing with the balky valve for several days, controllers determined it can’t be worked normally. Yet there is another valve nearby that possibly can.

Just “upstream” of the control valve is an isolation valve that possibly can be manipulated to control the temperature, said Kenny Todd, the ISS mission operations integration manager. While the valve is usually either open or closed to do its work, it is possible that it could be positioned at positions in between to warm up the coolant.

NASA Television graphic of where spare cooling pumps are located on station as of Dec. 13, 2013. On that day, NASA was weighing whether spacewalks were necessary to deal with a cooling problem caused by a malfunctioning flow control valve inside of a pump. Credit: NASA TV
NASA Television graphic of where spare cooling pumps are located on station as of Dec. 13, 2013. On that day, NASA was weighing whether spacewalks were necessary to deal with a cooling problem caused by a malfunctioning flow control valve inside of a pump. Credit: NASA TV

“Can we use it as a regulator, if you will, to restrict the flow coming from the radiator and by doing that, that would help to put the temperature in the loop a little warmer,” Todd said in an update broadcast on NASA Television today (Dec. 16) that you can watch in full below.

He added, “We’re taking a valve and using it for a different purpose than we’d originally intended.” This means that software must be adapted to control the valve from the ground, among other things. The hardware vendor (which Todd did not name) has said that theoretically this finer control would be possible.

It’s too early to say if this fix could work in the short term, let alone the long term, which is why Mastracchio and Hopkins are standing by ready to do a spacewalk if need be. NASA has experience with this kind of repair before, most notably in 2010 when astronauts aboard Expedition 24 performed three spacewalks to deal with a broken pump in the same cooling loop. There are three spare pumps aboard station that could swap out the crippled one.

NASA and Mastracchio have both said that the crew is doing fine. The largest scheduling changes are reportedly related to science experiments being suspended, as well as adding in some spacewalk preparation activities. Also, the Cygnus cargo spacecraft’s planned launch has been pushed back at least one day to Dec. 19; last week, NASA said the station’s cooling problem means it is violating certain “commit criteria” for the launch to move forward.

We’ll keep you updated as events warrant.