Dust is Hiding how Powerful Quasars Really are

An artist’s impression of what the dust around a quasar might look like from a light year away. Credit Peter Z. Harrington

In the 1970s, astronomers discovered that the persistent radio source at the center of our galaxy was a supermassive black hole (SMBH). Today, this gravitational behemoth is known as Sagittarius A* and has a mass roughly 4 million times that of the Sun. Since then, surveys have shown that SMBHs reside at the center of most massive galaxies and play a vital role in star formation and galactic evolution. In addition, the way these black holes consume gas and dust causes their respective galaxies to emit a tremendous amount of radiation from their Galactic Centers.

These are what astronomers refer to as Active Galactic Nuclei (AGN), or quasars, which can become so bright that they temporarily outshine all the stars in their disks. In fact, AGNs are the most powerful compact steady sources of energy in the Universe, which is why astronomers are always trying to get a closer look at them. For instance, a new study led by the University of California, Santa Cruz (UCSC) indicates that scientists have substantially underestimated the amount of energy emitted by AGN by not recognizing the extent to which their light is dimmed by dust.

Continue reading “Dust is Hiding how Powerful Quasars Really are”

Webb’s New Image Reveals a Galaxy Awash in Star Formation

This JWST image shows NGC 7469, a luminous, face-on spiral galaxy approximately 90 000 light-years in diameter that lies roughly 220 million light-years from Earth in the constellation Pegasus. Image Credit: ESA/Webb, NASA & CSA, L. Armus, A. S. Evans

When a spiral galaxy presents itself just right, observations reveal more detail. That’s the case with NGC 7469, a spiral galaxy about 220 million light-years away. It’s face-on towards us, and the James Webb Space Telescope captured its revealing scientific portrait.

Continue reading “Webb’s New Image Reveals a Galaxy Awash in Star Formation”

IceCube Senses Neutrinos Streaming From an Active Galaxy 47 Million Light-Years Away

This is a Hubble Space Telescope image of the Messier 77 spiral galaxy. Scientists working with the IceCube Neutrino Observatory detected neutrinos emanating from the galaxy's core. Image Credit: By NASA, ESA & A. van der Hoeven - http://www.spacetelescope.org/news/heic1305/, Public Domain, https://commons.wikimedia.org/w/index.php?curid=25328266

Researchers using the IceCube Neutrino Observatory have detected neutrinos emanating from the energetic core of an active galaxy millions of light-years away. Neutrinos are difficult to detect, and finding them originating from the galaxy is a significant development. What does the discovery mean?

Continue reading “IceCube Senses Neutrinos Streaming From an Active Galaxy 47 Million Light-Years Away”

Webb Sees Organic Molecules in the Hearts of Galaxies, Surprisingly Close to Active Supermassive Black Holes

Artist view of an active supermassive black hole. Credit: ESO/L. Calçada

When the James Webb Space Telescope (JWST) launched, one of its jobs was studying galactic formation and evolution. When we look around the Universe, today’s galaxies take the shape of grand spirals like the Whirlpool galaxy and giant ellipticals like M60. But galaxies didn’t always look like this.

We don’t see these shapes when we look at the most distant and most ancient galaxies. Early galaxies are lumpy and misshapen and lack the structure of modern galaxies.

A new study based on JSWT observations looks at organic molecules near galactic centers. The researchers say observing these molecules can teach us a lot about galactic evolution.

Continue reading “Webb Sees Organic Molecules in the Hearts of Galaxies, Surprisingly Close to Active Supermassive Black Holes”

Astronomers are Starting to Understand the Quasar Lifecycle

Supermassive black holes have a complicated lifecycle. Sometimes they’re “on”, blasting out tremendous amounts of energy, and sometimes they’re “off’, where they sleep like dragons in their caves. By comparing the proportion of high-energy to low-energy waves emitted by quasars, astronomers are beginning to pin down how many black holes are sleeping, and when they’re likely to wake back up.

Continue reading “Astronomers are Starting to Understand the Quasar Lifecycle”

Quasars are the Biggest Particle Accelerators in the Universe

Composite image of Centaurus A, showing the jets emerging from the galaxy’s central black hole, together with the associated gamma radiation. © ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray), H.E.S.S. collaboration (Gamma)

We puny humans think we can accelerate particles? Look how proud we are of the Large Hadron Collider. But any particle accelerator we build will pale in comparison to Quasars, nature’s champion accelerators.

Those things are beasts.

Read more

Astronomers Have Recorded the Biggest Explosion Ever Seen in the Universe

Hundreds of millions of light years away, a supermassive black hole sits in the center of a galaxy cluster named Ophiuchus. Though black holes are renowned for sucking in surrounding material, they sometimes expel material in jets. This black hole is the site of an almost unimaginably powerful explosion, created when an enormous amount of material was expelled.

Continue reading “Astronomers Have Recorded the Biggest Explosion Ever Seen in the Universe”

New Method for Researching Activity Around Quasars and Black Holes

Artist’s impression of ULAS J1120+0641, a very distant quasar powered by a black hole with a mass two billion times that of the Sun. Credit: ESO/M. Kornmesser
Artist’s impression of ULAS J1120+0641, a very distant quasar powered by a black hole with a mass two billion times that of the Sun. Credit: ESO/M. Kornmesser

Ever since the discovery of Sagittarius A* at the center of our galaxy, astronomers have come to understand that most massive galaxies have a Supermassive Black Hole (SMBH) at their core. These are evidenced by the powerful electromagnetic emissions produced at the nuclei of these galaxies – which are known as “Active Galatic Nuclei” (AGN) – that are believed to be caused by gas and dust accreting onto the SMBH.

For decades, astronomers have been studying the light coming from AGNs to determine how large and massive their black holes are. This has been difficult, since this light is subject to the Doppler effect, which causes its spectral lines to broaden. But thanks to a new model developed by researchers from China and the US, astronomers may be able to study these Broad Line Regions (BLRs) and make more accurate estimates about the mass of black holes.

The study, “Tidally disrupted dusty clumps as the origin of broad emission lines in active galactic nuclei“, recently appeared in the scientific journal Nature. The study was led by Jian-Min Wang, a researcher from the Institute of High Energy Physics (IHEP) at the Chinese Academy of Sciences, with assistance from the University of Wyoming and the University of Nanjing.

An artist’s impression of the accretion disc around the supermassive black hole that powers an active galaxy. Credit: NASA/Dana Berry, SkyWorks Digital

To break it down, SMBHs are known for having a torus of gas and dust that surrounds them. The black hole’s gravity accelerates gas in this torus to velocities of thousands of kilometers per second, which causes it to heat up and emit radiation at different wavelengths. This energy eventually outshined the entire surrounding galaxy, which is what allows astronomers to determine the presence of an SMBH.

As Michael Brotherton, a UW professor in the Department of Physics and Astronomy and a co0author on the study, explained in a UW press release:

“People think, ‘It’s a black hole. Why is it so bright?’ A black hole is still dark. The discs reach such high temperatures that they put out radiation across the electromagnetic spectrum, which includes gamma rays, X-rays, UV, infrared and radio waves. The black hole and surrounding accreting gas the black hole is feeding on is fuel that turns on the quasar.”

The problem with observing these bright regions comes from the fact that the gases within them are moving so quickly in different directions. Whereas gas moving away (relative to us) is shifted towards the red end of the spectrum, gas that is moving towards us is shifted towards the blue end. This is what leads to a Broad Line Region, where the spectrum of the emitted light becomes more like a spiral, making accurate readings difficult to obtain.

Currently, the measurement of the mass of SMBHs in active galactic nuclei relies the “reverberation mapping technique”. In short, this involves using computer models to examine the symmetrical spectral lines of a BLR and measuring the time delays between them. These lines are believed to arise from gas that has been photoionized by the gravitational force of the SMBH.

Dense clouds of dust and gas, illustrated here, can obscure less energetic radiation from an active galaxy’s central black hole. High-energy X-rays, however, easily pass through. Credit: ESA/NASA/AVO/Paolo Padovani

However, since there is little understanding of broad emission lines and the different components of BLRs, this method gives rise to some uncertainties off between 200 and 300%. “We are trying to get at more detailed questions about spectral broad-line regions that help us diagnose the black hole mass,” said Brotherton. “People don’t know where these broad emission line regions come from or the nature of this gas.”

In contrast, the team led by Dr. Wang adopted a new type of computer model that considered the dynamics of the gas torus surrounding a SMBH. This torus, they assume, would be made up of discrete clumps of matter that would be tidally disrupted by the black hole, resulting in some gas flowing into it (aka. accreting on it) and some being ejected as outflow.

From this, they found that the emission lines in a BLR are subject to three characteristics – “asymmetry”, “shape” and “shift”. After examining various emissions lines – both symmetrical and asymmetrical – they found that these three characteristics were strongly dependent on how bright the gas clumps were, which they interpreted as being a result of the angle of their motion within the torus. Or as Dr. Brotherton put it:

“What we propose happens is these dusty clumps are moving. Some bang into each other and merge, and change velocity. Maybe they move into the quasar, where the black hole lives. Some of the clumps spin in from the broad-line region. Some get kicked out.”

Illustration of the supermassive black hole at the center of the Milky Way. Credit: NRAO/AUI/NSF
Illustration of the supermassive black hole at the center of the Milky Way.
Credit: NRAO/AUI/NSF

In the end, their new model suggests that tidally disrupted clumps of matter from a black hole torus may represent the source of the BLR gas. Compared to previous models, the one devised by Dr. Wang and his colleagues establishes a connection between different key processes and components in the vicinity of a SMBH. These include the feeding of the black hole, the source of photoionized gas, and the dusty torus itself.

While this research does not resolve all the mysteries surrounding AGNs, it is an important step towards obtaining accurate mass estimates of SMBHs based on their spectral lines. From these, astronomers could be able to more accurately determine what role these black holes played in the evolution of large galaxies.

The study was made possible thanks with support provided by the National Key Program for Science and Technology Research and Development, and the Key Research Program of Frontier Sciences, both of which are administered by the Chinese Academy of Sciences.

Further Reading: IHEP, UW News, Nature

What are Active Galactic Nuclei?

An artist's impression of the accretion disc around the supermassive black hole that powers an active galaxy. Astronomers want to know if the energy radiated from a black hole is caused by jets of material shooting away from the hole, or by the accretion disk of swirling material near the hole. Credit: NASA/Dana Berry, SkyWorks Digital
An artist's impression of the accretion disc around the supermassive black hole that powers an active galaxy. Astronomers want to know if the energy radiated from a black hole is caused by jets of material shooting away from the hole, or by the accretion disk of swirling material near the hole. Credit: NASA/Dana Berry, SkyWorks Digital

In the 1970s, astronomers became aware of a compact radio source at the center of the Milky Way Galaxy – which they named Sagittarius A. After many decades of observation and mounting evidence, it was theorized that the source of these radio emissions was in fact a supermassive black hole (SMBH). Since that time, astronomers have come to theorize that SMBHs at the heart of every large galaxy in the Universe.

Most of the time, these black holes are quiet and invisible, thus being impossible to observe directly. But during the times when material is falling into their massive maws, they blaze with radiation, putting out more light than the rest of the galaxy combined. These bright centers are what is known as Active Galactic Nuclei, and are the strongest proof for the existence of SMBHs.

Description:

It should be noted that the enormous bursts in luminosity observed from Active Galactic Nuclei (AGNs) are not coming from the supermassive black holes themselves. For some time, scientists have understood that nothing, not even light, can escape the Event Horizon of a black hole.

Instead, the massive burst of radiations – which includes emissions in the radio, microwave, infrared, optical, ultra-violet (UV), X-ray and gamma ray wavebands – are coming from cold matter (gas and dust) that surround the black holes. These form accretion disks that orbit the supermassive black holes, and gradually feeding them matter.

The incredible force of gravity in this region compresses the disk’s material until it reaches millions of degrees kelvin. This generates bright radiation, producing electromagnetic energy that peaks in the optical-UV waveband. A corona of hot material forms above the accretion disc as well, and can scatter photons up to X-ray energies.

A large fraction of the AGN’s radiation may be obscured by interstellar gas and dust close to the accretion disc, but this will likely be re-radiated at the infrared waveband. As such, most (if not all) of the electromagnetic spectrum is produced through the interaction of cold matter with SMBHs.

The interaction between the supermassive black hole’s rotating magnetic field and the accretion disk also creates powerful magnetic jets that fire material above and below the black hole at relativistic speeds (i.e. a significant fraction of the speed of light). These jets can extend for hundreds of thousands of light-years, and are a second potential source of observed radiation.

Types of AGN:

Typically, scientists divide AGN into two categories, which are referred to as “radio-quiet” and “radio-loud” nuclei. The radio-loud category corresponds to AGNs that have radio emissions produced by both the accretion disk and the jets. Radio-quiet AGNs are simpler, in that any jet or jet-related emission are negligible.

Carl Seyfert discovered the first class of AGN in 1943,  which is why they now bear his name. “Seyfert galaxies” are a type of radio-quiet AGN that are known for their emission lines, and are subdivided into two categories based on them. Type 1 Seyfert galaxies have both narrow and broadened optical emissions lines, which imply the existence of clouds of high density gas, as well as gas velocities of between 1000 – 5000 km/s near the nucleus.

Type 2 Seyferts, in contrast, have narrow emissions lines only. These narrow lines are caused by low density gas clouds that are at greater distances from the nucleus, and gas velocities of about 500 to 1000 km/s. As well as Seyferts, other sub classes of radio-quiet galaxies include radio-quiet quasars and LINERs.

Low Ionisation Nuclear Emission-line Region galaxies (LINERs) are very similar to Seyfert 2 galaxies, except for their low ionization lines (as the name suggests), which are quite strong. They are the lowest-luminosity AGN in existence, and it is often wondered if they are in fact powered by accretion on to a supermassive black hole.

Artist's representation of an active galactic nucleus (AGN) at the center of a galaxy. Credit: NASA/CXC/M.Weiss
Artist’s representation of an active galactic nucleus (AGN) at the center of a galaxy. Credit: NASA/CXC/M.Weiss

Radio-loud galaxies can also be subdivded into categories like radio galaxies, quasars, and blazars. As the name suggests, radio galaxies are elliptical galaxies that are strong emitters of radiowaves. Quasars are the most luminous type of AGN, which have spectra similar to Seyferts.

However, they are different in that their stellar absorption features are weak or absent (meaning they are likely less dense in terms of gas) and the narrow emission lines are weaker than the broad lines seen in Seyferts.  Blazars are a highly variable class of AGN that are radio sources, but do not display emission lines in their spectra.

Detection:

Historically speaking, a number of features have been observed within the centers of galaxies that have allowed for them to be identified as AGNs. For instance, whenever the accretion disk can be seen directly, nuclear-optical emissions can be seen. Whenever the accretion disk is obscured by gas and dust close to the nucleus, an AGN can be detected by its infra-red emissions.

Then there are the broad and narrow optical emission lines that are associated with different types of AGN. In the former case, they are produced whenever cold material is close to the black hole, and are the result of the emitting material revolving around the black hole with high speeds (causing a range of Doppler shifts of the emitted photons). In the former case, more distant cold material is the culprit, resulting in narrower emission lines.

Image taken by the Hubble Space Telescope of a 5000-light-year-long jet ejected from the active galaxy M87. The blue synchrotron radiation contrasts with the yellow starlight from the host galaxy. Credit: NASA/The Hubble Heritage Team (STScI/AURA)
Image taken by the Hubble Space Telescope of a 5000-light-year-long jet ejected from the active galaxy M87. Credit: NASA/The Hubble Heritage Team (STScI/AURA)

Next up, there are radio continuum and x-ray continuum emissions. Whereas radio emissions are always the result of the jet, x-ray emissions can arise from either the jet or the hot corona, where electromagnetic radiation is scattered. Last, there are x-ray line emissions, which occur when x-ray emissions illuminate the cold heavy material that lies between it and the nucleus.

These signs, alone or in combination, have led astronomers to make numerous detections at the center of galaxies, as well as to discern the different types of active nuclei out there.

The Milky Way Galaxy:

In the case of the Milky Way, ongoing observation has revealed that the amount of material accreted onto Sagitarrius A is consistent with an inactive galactic nucleus. It has been theorized that it had an active nucleus in the past, but has since transitioned into a radio-quiet phase. However, it has also been theorized that it might become active again in a few million (or billion) years.

When the Andromeda Galaxy merges with our own in a few billion years, the supermassive black hole that is at its center will merge with our own, producing a much more massive and powerful one. At this point, the nucleus of the resulting galaxy – the Milkdromeda (Andrilky) Galaxy, perhaps? – will certainly have enough material for it to be active.

The discovery of active galactic nuclei has allowed astronomers to group together several different classes of galaxies. It’s also allowed astronomers to understand how a galaxy’s size can be discerned by the behavior at its core. And last, it has also helped astronomers to understand which galaxies have undergone mergers in the past, and what could be coming for our own someday.

We have written many articles about galaxies for Universe Today. Here’s What Fuels the Engine of a Supermassive Black Hole?, Could the Milky Way Become a Black Hole?, What is a Supermassive Black Hole?, Turning on a Supermassive Black Hole, What Happens when Supermassive Black Holes Collide?.

For more information, check out Hubblesite’s News Releases on Galaxies, and here’s NASA’s Science Page on Galaxies.

Astronomy Cast also has episodes about galactic nuclei and supermassive black holes. Here’s Episode 97: Galaxies and Episode 213: Supermassive Black Holes.

Source:

New Simulation Models Galaxies Like Never Before

Zooming into an EAGLE galaxy. Credit: EAGLE Project Consortium/Schaye et al.

Astronomy is, by definition, intangible. Traditional laboratory-style experiments that utilize variables and control groups are of little use to the scientists who spend their careers analyzing the intricacies our Universe. Instead, astronomers rely on simulations – robust, mathematically-driven facsimiles of the cosmos – to investigate the long-term evolution of objects like stars, black holes, and galaxies. Now, a team of European researchers has broken new ground with their development of the EAGLE project: a simulation that, due to its high level of agreement between theory and observation, can be used to probe the earliest epochs of galaxy formation, over 13 billion years ago.

The EAGLE project, which stands for Evolution and Assembly of GaLaxies and their Environments, owes much of its increased accuracy to the better modeling of galactic winds. Galactic winds are powerful streams of charged particles that “blow” out of galaxies as a result of high-energy processes like star formation, supernova explosions, and the regurgitation of material by active galactic nuclei (the supermassive black holes that lie at the heart of most galaxies). These mighty winds tend to carry gas and dust out of the galaxy, leaving less material for continued star formation and overall growth.

Previous simulations were problematic for researchers because they produced galaxies that were far older and more massive than those that astronomers see today; however, EAGLE’s simulation of strong galactic winds fixes these anomalies. By accounting for characteristic, high-speed ejections of gas and dust over time, researchers found that younger and lighter galaxies naturally emerged.

After running the simulation on two European supercomputers, the Cosmology Machine at Durham University in England and Curie in France, the researchers concluded that the EAGLE project was a success. Indeed, the galaxies produced by EAGLE look just like those that astronomers expect to see when they look to the night sky. Richard Bower, a member of the team from Durham, raved, “The universe generated by the computer is just like the real thing. There are galaxies everywhere, with all the shapes, sizes and colours I’ve seen with the world’s largest telescopes. It is incredible.”

The upshots of this new work are not limited to scientists alone; you, too, can explore the Universe with EAGLE by downloading the team’s Cosmic Universe app. Videos of the EAGLE project’s simulations are also available on the team’s website.

A paper detailing the team’s work is published in the January 1 issue of Monthly Notices of the Royal Astronomical Society. A preprint of the results is available on the ArXiv.