Do Red Dwarfs Provide Enough Sunlight for Plants to Grow?

This artist’s impression shows the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. The double star Alpha Centauri AB also appears in the image between the planet and Proxima itself. Proxima b is a little more massive than the Earth and orbits in the habitable zone around Proxima Centauri, where the temperature is suitable for liquid water to exist on its surface. Credit: ESO/M. Kornmesser

To date, 5,250 extrasolar planets have been confirmed in 3,921 systems, with another 9,208 candidates awaiting confirmation. Of these, 195 planets have been identified as “terrestrial” (or “Earth-like“), meaning that they are similar in size, mass, and composition to Earth. Interestingly, many of these planets have been found orbiting within the circumsolar habitable zones (aka. “Goldilocks zone”) of M-type red dwarf stars. Examples include the closest exoplanet to the Solar System (Proxima b) and the seven-planet system of TRAPPIST-1.

These discoveries have further fueled the debate of whether or not these planets could be “potentially-habitable,” with arguments emphasizing everything from tidal locking, flare activity, the presence of water, too much water (i.e., “water worlds“), and more. In a new study from the University of Padua, a team of astrobiologists simulated how photosynthetic organisms (cyanobacteria) would fare on a planet orbiting a red dwarf. Their results experimentally demonstrated that oxygen photosynthesis could occur under red suns, which is good news for those looking for life beyond Earth!

Continue reading “Do Red Dwarfs Provide Enough Sunlight for Plants to Grow?”

Scientists Discover a New Way Exoplanets Could Make Oxygen; Unfortunately, it Doesn’t Require Life

Oxygen is a valuable biosignature because Earth is oxygen-rich, and because life made all that oxygen. But if we find oxygen in an exoplanet atmosphere does that mean life made it? Or is there an abiotic source of oxygen? Image Credit: NASA

Finding oxygen in an exoplanet’s atmosphere is a clue that life may be at work. On Earth, photosynthetic organisms absorb carbon dioxide, sunlight, and water and produce sugars and starches for energy. Oxygen is the byproduct of that process, so if we can detect oxygen elsewhere, it’ll generate excitement. But researchers have also put pressure on the idea that oxygen in an exoplanet’s atmosphere indicates life. It’s only evidence of life if we can rule out other pathways that created the oxygen.

But scientists can’t rule them out.

Continue reading “Scientists Discover a New Way Exoplanets Could Make Oxygen; Unfortunately, it Doesn’t Require Life”