Pure Metal Asteroid Has Mysterious Water Deposits

An artist’s concept of the Psyche spacecraft, a proposed mission for NASA’s Discovery program that would explore the huge metal Psyche asteroid from orbit. Credit: NASA/JPL-Caltech.

Water has been showing up in all sorts of unexpected places in our Solar System, such as the Moon, Mercury and Jupiter’s moon Ganymede. Add one more place to the list: Asteroid 16 Psyche. This metal-rich asteroid may have traces of water molecules on its surface that shouldn’t be there, researchers say.

Psyche is thought to be the largest metallic asteroid in the Solar System, at 300 km (186 miles) across and likely consists of almost pure nickel-iron metal. Scientists had thought Psyche was made up of the leftover core of a protoplanet that was mostly destroyed by impacts billions of years ago, but they may now be rethinking that.

“The detection of a 3 micron hydration absorption band on Psyche suggests that this asteroid may not be metallic core, or it could be a metallic core that has been impacted by carbonaceous material over the past 4.5 Gyr,” the team said in their paper.

While previous observations of Psyche had shown no evidence for water on its surface, new observations with the NASA Infrared Telescope Facility found evidence for volatiles such as water or hydroxyl on the asteroid’s surface. Hydroxyl is a free radical consisting of one hydrogen atom bound to one oxygen atom.

“We did not expect a metallic asteroid like Psyche to be covered by water and/or hydroxyl,” said Vishnu Reddy, from the University of Arizona’s Lunar and Planetary Laboratory, a co-author of the new paper about Psyche. “Metal-rich asteroids like Psyche are thought to have formed under dry conditions without the presence of water or hydroxyl, so we were puzzled by our observations at first.”

Asteroids usually fall into two categories: those rich in silicates, and those rich in carbon and volatiles. Metallic asteroids like Psyche are extremely rare, making it a laboratory to study how planets formed.

he asteroid Psyche is one of the larger asteroids.  Credit: Lindy T. Elkins-Tanton
he asteroid Psyche is one of the larger asteroids. Credit: Lindy T. Elkins-Tanton

For now, the source of the water on Psyche remains a mystery. But Redddy and his colleagues propose a few different explanations. One is, again, Psyche may not be as metallic as previously thought. Another option is that the water or hydroxyl could be the product of solar wind interacting with silicate minerals on Psyche’s surface, such as what is occurring on the Moon.

The most likely explanation, however is that the water seen on Psyche might have been delivered by carbonaceous asteroids that impacted Psyche in the distant past, as is thought to have occurred on early Earth.

“Our discovery of carbon and water on an asteroid that isn’t supposed to have those compounds supports the notion that these building blocks of life could have been delivered to our Earth early in the history of our solar system,” said Reddy.

If we’re lucky, we won’t have to wait too long to find out more about Psyche. A mission to Psyche is on the short list of mission proposals being considered by NASA, with a potential launch as early as 2020. Reddy and team said an orbiting spacecraft could explore this unique asteroid and determine if whether there is water or hydroxyl on the surface.

Sources: Europlanet, University of Arizona, paper: Detection of Water and/or Hydroxyl on Asteroid (16) Psyche.

A Mission to a Metal World: The Psyche Mission

NASA Selects Investigations for Future Key Planetary Mission Artist's concept of the Psyche spacecraft, a proposed mission for NASA's Discovery program that would conduct a direct exploration of an object thought to be a stripped planetary core. Credit: NASA/JPL-Caltech

In their drive to set exploration goals for the future, NASA’s Discovery Program put out the call for proposals for their thirteenth Discovery mission in February 2014. After reviewing the 27 initial proposals, a panel of NASA and other scientists and engineers recently selected five semifinalists for additional research and development, one or two of which will be launching by the 2020s.

With an eye to Venus, near-Earth objects and asteroids, these missions are looking beyond Mars to address other questions about the history and formation of our Solar System. Among them is the proposed Psyche mission, a robotic spacecraft that will explore the metallic asteroid of the same name – 16 Psyche – in the hopes of shedding some light on the mysteries of planet formation.

Discovered by Italian astronomer Annibale de Gasparis on March 17th, 1852 – and named after a Greek mythological figure – Psyche is one the ten most-massive asteroids in the Asteroid Belt. It is also the most massive M-type asteroid, a special class pertaining to asteroids composed primarily of nickel and iron.

For some time, scientists have speculated that this metallic asteroid is in fact the survivor of a protoplanet. In this scenario, a violent collision with a planetesimal stripped off Psyche’s outer, rocky layers, leaving behind only the dense, metallic interior. This theory is supported by estimates of Psyche’s bulk density, spectra, and radar surface properties; all of which show it to be an object unlike any others in the Belt.

Promotional artwork for the proposed Psyche mission. Credit: Peter Rubin/JPL-CALTECH.
Promotional artwork for the proposed Psyche mission. Credit: Peter Rubin/JPL-CALTECH.

In addition, this composition of 16 Psyche is strikingly similar to that of Earth’s metal core. Given that astronomers think that larger planets like Venus, Earth and Mars formed from the collision and merger of smaller worlds, Psyche could be the remains of a protoplanet that did not get to create a larger body.

Had such a planetesimal been struck by a large enough object, it would have been able to lose its lower-mass exterior while keeping its core intact. Thus, studying this 250 km (155 mile) wide body, offers a unique opportunity to learn more about the interiors of planets and large moons, whose cores are hidden beneath many miles of rock.

Dr. Linda Elkins-Tanton of Arizona State University’s School of Earth and Space Exploration is the Principle Investigator of this mission. As she and her team stated in their mission proposal paper, which was originally submitted as part of the 45th Lunar and Planetary Science Conference (2014):

“This mission would be a journey back in time to one of the earliest periods of planetary accretion, when the first bodies were not only differentiating, but were being pulverized, shredded, and accreted by collisions. It is also an exploration, by proxy, of the interiors of terrestrial planets and satellites today: we cannot visit a metallic core any other way.

“For all of these reasons, coupled with the relative accessibility to low- cost rendezvous and orbit, Psyche is a superb target for a Discovery-class mission that would characterize its geology, shape, elemental composition, magnetic field , and mass distribution.”

The huge metal asteroid Psyche may have a strong remnant magnetic field. Credit: Damir Gamulin/Ben Weiss
The huge metal asteroid Psyche may have a strong remnant magnetic field. Credit: Damir Gamulin/Ben Weiss

A robotic mission to Pysche would also help astronomers learn more about metal worlds, a type of solar system object that scientists know very little about. But perhaps the greatest reason to study 16 Psyche is the fact that it is unique. So far, this body is the only metallic core-like body that has been discovered in the Solar System.

The proposed spacecraft would orbit Psyche for six months, studying its topography, surface features, gravity, magnetism, and other characteristics. The mission would also be cost-effective and quick to launch, since it is largely based on technology that went into the making of NASA’s Dawn probe. Currently in orbit around Ceres, the Dawn mission has demonstrated the effectiveness of many new technologies, not the least of which was the xenon ion thruster.

The Psyche orbiter mission was selected as one of the Discovery Program’s five semifinalists on September 30th, 2015. Each proposal has received $3 million for year-long studies to lay out detailed mission plans and reduce risks. One or two finalist will be selected to receive the program’s budget of $450 million (minus the cost of a launch vehicle and mission operations) and will launch in 2020 at the earliest.