Planck Starts Collecting Light Left Over From Big Bang

Artists concept of the Planck spacecraft. Credit: JPL

[/caption]
As of August 13, 2009, the Planck mission is officially in business. It is now seeing light billions of years old, left over from the Big Bang. From its location in the L2 point, the spacecraft started collecting science data as part of the “First Light Survey” which is intended to check out all the systems. If all goes as planned, these observations will be the first of 15 or more months of data gathered from two full-sky scans.

Researcher Chris North wrote on the Planck website that “the major science results will take quite a while to come out due to the immense amount of computation needed to analyse them, and are expected in around 3 years’ time. These results will be a full-sky map of the Cosmic Microwave Background, and more accurate measurements of the parameters which have governed how our Universe has evolved.”

The mission, which is led by the European Space Agency with important participation from NASA, will help answer the most fundamental of questions: How did space itself pop into existence and expand to become the universe we live in today? The answer is hidden in ancient light, called the cosmic microwave background, which has traveled more than 13 billion years to reach us. Planck will measure tiny variations in this light with the best precision to date.

After the 15 month prime mission, Planck will continue to scan the sky until its coolant runs out.

For more on Planck, check out these websites:

Cardiff University’s Planck website
ESA’s Planck Website
NASA’s Planck website
Planck Blog

Weekend SkyWatcher’s Forecast – August 14-16, 2009

Greetings, fellow SkyWatchers! Have you had a wonderful week chasing the Perseid Meteor shower? Well, the show isn’t over yet. Enjoy this weekend’s darker skies and keep watching! While you’re out, why not take a pair of binoculars with you and do a little cluster hunting? If you’re feeling energetic – take out the telescope and resolve them. Who knows what you might learn if you listen to what’s out there… Things like where to find chemically peculiar stars – or a runaway black hole! It’s all waiting for you in the night….

Friday, August 14, 2009 – If you were up well before dawn this morning watching the Perseids, did you notice the Pleiades brushing by the Moon? What a lovely sight! I wonder if it was an occultation event somewhere?

Tonight let’s venture about three finger-widths northeast of Lambda Sagittarii to visit a well known but little visited galactic cluster—M25 (RA 18 31 42 Dec -19 07 00). Discovered by Cheseaux and then cataloged by Messier, it was observed and recorded by William Herschel, Johann Elert Bode, Admiral Smythe, and T.W.Webb but never added to the NGC catalog of John Herschel! Thanks to J.L.E. Dreyer, it did make the second Index Catalog as IC 4725.

m25

M25 is seen even with the slightest optical aid, and this 5th magnitude cluster contains two G-type giants as well as a Delta Cephei-type variable with the designation of U, which changes about 1 magnitude in a period of less than a week. It’s very old for an open cluster, perhaps near 90 million years, and the light you see tonight left the cluster over 2,000 years ago. Although binoculars will see about a double handful of bright stars overlying fainter members, telescopes will reveal more and more as aperture increases. At one time it was believed to have only about 30 members, but this was later revised to 86. But recent studies by Archinal and Hynes indicate it may have as many as 601 member stars!

voyager1Saturday, August 15, 2009 – On this date in 2006, Voyager 1, the most distant manmade object, reached 100 astronomical units (AUs) from the Sun—meaning 100 times more distant from the Sun than Earth—about 15,000 million kilometers (9,300 million miles). Voyager 1 continues traveling at a rate of about a million miles per day and could cross into interstellar space within 10 years. What fanastic sights do you think it is seeing?

Tonight we’ll head toward the riches of Scorpius to have a look at three pristine open clusters. Begin your starhop at the colorful southern Zeta pair and head north less than 1 degree for NGC 6231 (RA 16 54 08 Dec -41 49 36).

ngc6231

Wonderfully bright in binoculars and well resolved in the telescope, this tight-open cluster was discovered by Hodierna before 1654. De Cheseaux cataloged it as object 9, Lacaille as II.13, Dunlop as 499, Melotte as 153, and Collinder as 315. No matter what catalog number you choose to put in your notes, you’ll find the 3.2-million-year young cluster shining as the ‘‘Northern Jewelbox!’’ For high power fans, look for the brightest star in this group, called van den Bos 1833, a
splendid binary.

About another degree north is the loose open cluster Collinder 316, with its stars scattered widely across the sky. Caught on its eastern edge is another cluster known as Trumpler 24, a site where new variables might be found. This entire region is encased in a faint emission nebula called IC 4628, making this low-power journey through southern Scorpius a red-hot summer treat!

Sunday, August 16, 2009 – Before dawn, look for the close pair of Mars and the Moon celebrating the 1744 birth on this date of Pierre Mechain! We know Mechain as Charles Messier’s assistant, but Mechain was himself a fine astronomer and mathematical prodigy. He discovered 11 comets, and provided 26 entries to Messier’s catalog. If he were alive today, Pierre would be eager to join us tonight for our studies.

Begin about a degree and a half south of twin Nu Scorpii for NGC 6242 (RA 16 55 36 Dec -39 28 00).

ngc6242

Discovered by Lacaille and cataloged as I.4, this object is also known as Dunlop 520, Melotte 155, and Collinder 317. At roughly magnitude 6, this open cluster is within binocular range but truly needs a telescope to appreciate its fainter stars. Although NGC 6242 might seem like nothing more than a pretty little cluster with a bright double star, it contains an X-ray binary that is a ‘‘runaway’’ black hole, surmised to have formed near the galactic center and vaulted into an eccentric orbit when the progenitor star exploded. Its kinetic energy is much like that of a neutron star or a millisecond pulsar, and it was the first black hole confirmed to be in motion.

ngc6268Now head a little more than a degree east-southeast for NGC 6268 (RA 17 02 40 Dec -39 44 18).

At a rough magnitude of 9, this small open cluster can be easily observed in smaller scopes and resolved in larger ones. NGC 6268 itself is somewhat lopsided, with more of its members clustered near its western border. Although it, too, might not seem particularly interesting, this young cluster is highly evolved and contains some magnetic, chemically peculiar stars; it has some Be-class, or metal weak, members as well.

Until next week? Keep on yelling when the Perseids fly over! I’m sure St. Lawrence would approve…

This week’s awesome images are (in order of appearance): M25 (credit—Palomar Observatory, courtesy of Caltech), Voyager 1 (credit—NASA), NGC 6231, NGC 6242 and NGC 6268 (credit—Palomar Observatory, courtesy of Caltech). We thank you so much!

Found: Planetary Nebula Around Heavy Stars

An optical image from the 0.6-m University of Michigan/CTIO Curtis Schmidt telescope of the brightest Radio Planetary Nebula in the Small Magellanic Cloud, JD 04. The inset box shows a portion of this image overlaid with radio contours from the Australia Telescope Compact Array. The planetary nebula is a glowing record of the final death throes of the star. (Optical images are courtesy of the Magellanic Cloud Emission Line Survey (MCELS) team).

[/caption]
Planetary nebula – the glowing gaseous shells thrown off by stars during the latter stages of their evolution – were thought to only form around stars the size of our Sun or smaller. Although astronomers had predicted these shells should form around “heavier” stars, none had ever been detected. Until now. An international team of scientists have discovered a new class of object which they call “Super Planetary Nebulae,” found around stars up to 8 times the mass of the Sun.  

“This came as a shock to us,” said Miroslav Filipovic from the University of Western Sydney “as no one expected to detect these object at radio wavelengths and with the present generation of radio telescopes. We have been holding up our findings for some 3 years until we were 100% sure that they are indeed Planetary Nebulae”.

 The team surveyed the Magellanic Clouds, the two companion galaxies to the Milky Way, with radio telescopes of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australia Telescope National Facility. They noticed that 15 radio objects in the Clouds match with well known planetary nebulae observed by optical telescopes.
 
The new class of objects are unusually strong radio sources and are associated with larger original stars (progenitors), up to 8 times the mass of the Sun. The nebular material around each star may have as much as 2.6 times the mass of the Sun.

Filipovic’s team argues that the detections of these new objects may help to solve the so called “missing mass problem” – the absence of planetary nebulae around central stars that were originally 1 to 8 times the mass of the Sun. Up to now most known planetary nebulae have central stars and surrounding nebulae with respectively only about 0.6 and 0.3 times the mass of the Sun but none have been detected around more massive stars.

Some of the 15 newly discovered planetary nebulae in the Magellanic Clouds are 3 times more luminous than any of their Milky Way cousins. But to see them in greater detail astronomers will need the power of a coming radio telescope – the Square Kilometre Array planned for the deserts of Western Australia.

The scientist’s paper appears in the journal Monthly Notices of the Royal Astronomical Society.

Lead image caption: An optical image from the 0.6-m University of Michigan/CTIO Curtis Schmidt telescope of the brightest Radio Planetary Nebula in the Small Magellanic Cloud, JD 04. The inset box shows a portion of this image overlaid with radio contours from the Australia Telescope Compact Array. The planetary nebula is a glowing record of the final death throes of the star. (Optical images are courtesy of the Magellanic Cloud Emission Line Survey (MCELS) team).

Source: RAS

Hunt for Supernovae With Galaxy Zoo

How would you like to find a supernova? I can’t think of anyone who wouldn’t be proud to say they have spotted an exploding star. And now, perhaps you can – and without all the work of setting up your telescope and staying up all night (well, that can be fun, too, but…). The great folks who brought you Galaxy Zoo have now partnered with the Palomar Transient Factory to offer the public a chance to hunt and click for supernovae from the comfort of your own computer. And yes, you can still classify galaxies at Galaxy Zoo, but now you can search for for the big guns out in space, too. Sound like fun?

The Palomar Transient Facory uses the famous Palomar Observatory and the Samuel Oschin 1.2 m telescope to look for anything that’s changing in the sky — whether it’s a variable star, an asteroid moving across the sky, the flickering of an active galaxy’s nucleus or a supernova. For now, though, the partnership with Galaxy Zoo will concentrate on finding supernovae, and in particular Type 1A supernovae.

According to Scott Kardel of the Palomar Observatory, “the quantity and quality of the new data that’s been coming in are absolutely mind blowing for astronomers working in this field. On one recent night PTF patrolled a section of the sky about five times the size of the Big Dipper and found eleven new objects.” For the supernova search, it returns to the same galaxies twice a night, every five nights.

That’s where the Zooites from Galaxy Zoo come in: searching through all specially chosen PTF data and looking for supernovae.

“Your task is to search through the candidates found by PTF” said the Galaxy Zoo team. “Waiting for your results are two intrepid Oxford astronomers, Mark and Sarah, who have travelled out to the Roque de los Muchachos Observatory on the Canary Island of La Palma. They have time allocated on the 4.2m William Herschel Telescope to follow up the best of our discoveries.”

Check out Galaxy Zoo’s Supernova page for more info and to sign up to be part of this exciting new Citizen Science project!

For more info on the Palomar Transient Factory, listen to Scott Kardel’s 365 Days of Astronomy podcast.

Naked Saturn

Saturn on August 12, 2009 just after equinox. Credit: NASA

[/caption]
Here’s one of the first raw images of Saturn taken by the Cassini spacecraft just after equinox, on August 12, 2009. The planet sure looks naked without its rings! But not to fear, the rings are still there; we just can’t see them very well — only a thin line. That’s because the sun was shining directly straight-on at the rings at Saturn’s equinox, and the spacecraft was in the right place, too. Equinox occurs every half-Saturn-year which is equivalent to about 15 Earth years. The illumination geometry that accompanies equinox lowers the sun’s angle to the ringplane and causes out-of-plane structures and some moons to cast long shadows across the rings. The ring shadows themselves have become a rapidly narrowing band cast onto the planet. Below, see another image with the rings visible as the spacecraft changed its angle.

Saturn's rings at equinox. Credit: NASA
Saturn's rings at equinox. Credit: NASA

Check out more raw images from the equinox here.

IYA Live Telescope Today: Delta Gruis and the “Tarantula Nebula”

Hey, folks! What a treat. The skies were clear and dark in central Victoria earlier and the beautiful double star – Delta Gruis – came out to play. Afterwards we homed in on the incredibly bright Tarantula Nebula. While you’re at it, you might want to update your bookmarks to this IYA Live Telescope link. Now… Go and look at our new video! Once in awhile you can even see other portions the Magellanic Cloud in there, too!

The stars that form Grus were originally considered part of Piscis Austrinus (the southern fish), and the Arabic names of many of its stars reflect this classification.

The stars were first defined as a separate constellation by Petrus Plancius, who created twelve new constellations based on the observations of Pieter Dirkszoon Keyser and Frederick de Houtman. Grus first appeared on a 35-cm diameter celestial globe published in 1597 (or 1598) in Amsterdam by Plancius with Jodocus Hondius. Its first depiction in a celestial atlas was in Johann Bayer’s Uranometria of 1603. Plancius chose the crane because that bird was considered to symbolise watchfulness. An alternative name for the constellation, Phoenicopterus (Latin for flamingo), was used briefly in England during the 17th century.

Now that it’s good and dark and we’ve got a bit before the Moon, let’s take a look at something even more fantastic… the Tarantula Nebula!

The Tarantula Nebula (also known as 30 Doradus, or NGC 2070) is an H II region in the Large Magellanic Cloud. It was originally thought to be a star, but in 1751 Nicolas Louis de Lacaille recognized its nebular nature.

The Tarantula Nebula has an apparent magnitude of 8. Considering its distance of about 180,000 light years, this is an extremely luminous non-stellar object. Its luminosity is so great that if it were as close to Earth as the Orion Nebula, the Tarantula Nebula would cast shadows. In fact, it is the most active starburst region known in the Local Group of galaxies. It is also the largest and most active such region in the Local Group with an estimated diameter of 200 pc.

The nebula resides on the leading edge of the LMC, where ram pressure stripping, and the compression of the interstellar medium
likely resulting from this, is at a maximum. At its core lies the extremely compact cluster of stars (~2.5 pc diameter) – R136a – that produces most of the energy that makes the nebula visible. The estimated mass of the cluster is 450,000 solar masses, suggesting it will likely become a globular cluster in future.

In addition to R136, the Tarantula Nebula also contains an older star cluster—catalogued as Hodge 301—with an age of 20–25 million years. The most massive stars of this cluster have already exploded in supernovae. The closest supernova since the invention of the telescope, Supernova 1987A, occurred in the outskirts of the Tarantula Nebula.

As always, check back periodically on the IYA “Live” telescope. It can’t be cloudy forever!

Factual Information Source: Wikipedia

This Week’s WITU Challenge

I’m a day late (sorry!) but here’s this week’s image for the Where In The Universe Challenge, to test your visual knowledge of the cosmos. You know what to do: take a look at this image and see if you can determine where in the universe this image is from; give yourself extra points if you can name the spacecraft responsible for the image. We’ll provide the image today, but won’t reveal the answer until tomorrow. This gives you a chance to mull over the image and provide your answer/guess in the comment section. Please, no links or extensive explanations of what you think this is — give everyone the chance to guess.

UPDATE: The answer has now been posted below.

This is a dust devil on Mars, captured by the HiRISE camera on the Mars Reconnaissance Orbiter. The white mass is a swirling vortex of dust, and the darker line is a shadow cast by this swirling column of dust. This image is from some of the newest releases by HiRISE, see them all here. Find out more about this particular image here.

Check back next week for another WITU challenge!

NASA Doesn’t Receive Enough Money for Mandated Asteroid Search

Planet Killer
Artist's conception of an asteroid hitting Earth.

In 2005, the US Congress mandated that NASA discover 90 percent of all near-Earth objects 140 meters in diameter or greater by 2020. But they forgot one minor detail: Congress or the administration did not request or appropriate any new funds to meet this objective, and with NASA’s existing budget, there is no way NASA can meet the mandated goal.

Does anyone else see a pattern here?

“For the first time, humanity has the capacity and the audacity to avoid a natural disaster,” says Irwin Shapiro of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., who headed a National Research Council panel to asses NASA’s progress in reaching the asteroid detection goal . “It really is a question of how much to invest in an insurance policy for the planet.”

NASA was also directed by the Bush administration to build spacecraft to return to the Moon, and perhaps go on to Mars, but do the job (as well as complete the space station and make sure the shuttles can fly safely) with no real increase in budget.

From the report:

Currently, the U.S. government spends a relatively small amount of money funding a search and survey program to discover and track near-Earth objects, and virtually no money on studying methods of mitigating the hazards posed by such objects. Although Congress has mandated that NASA conduct this survey program and has established goals for the program, neither Congress nor the administration has sought to fund it with new appropriations. As a result, NASA has supported this activity by taking funds from other programs, while still leaving a substantial gap between the goals established by Congress and the funds needed to achieve them.

The report is available here (download the free pdf version)

But in summary, the report says that since only limited facilities are currently involved in the asteroid survey/discovery effort, NASA cannot meet the goals of the Congressional mandate on the existing budget. Instead, the three current survey efforts dedicated to the problem, supported at current levels, will likely find only about 15%.

The report also says that Harvard-Smithsonian’s Minor Planet Center is more than capable of handling the observations of the congressionally mandated survey, but there isn’t enough funds for adequate staffing.

If this is true, the facilities to do the job appear to be in place, and no new observatories need to be built or spacecraft need to be launched. How much more money would it take to hire enough people?

However, only three surveys are currently involved in the search (Catalina Sky Survey, Spacewatch and Lincoln Near Earth Asteroid Research), and the panel suggests that more telescopes and spacecraft would be beneficial to the search. Several ground-based telescopes have been proposed or are currently under development that could contribute substantially to meeting the goal established by Congress. However, none has yet been fully funded, nor principally dedicated to the NEO discovery goal.

Right now, the US is the only country that currently has an operating survey/detection program for discovering near-Earth objects. Canada and Germany are both building spacecraft that may contribute to the discovery of near-Earth objects, but neither mission will detect fainter or smaller objects than ground-based telescopes.

But the US isn’t alone in the non-funding of asteroid searches. “Virtually no international funds are spent supporting ground-based NEO surveys, and international NEO discovery efforts are largely conducted on an ad hoc, voluntary, or amateur basis. NASA is the agency that has funded more than 97 percent of the discoveries of NEOs in the last decade,” says the report.

Sources: USA Today, National Acadamies Press

Variability in Type 1A Supernovae Has Implications for Studying Dark Energy

A Hubble Space Telescope-Image of Supernova 1994D (SN1994D) in galaxy NGC 4526 (SN 1994D is the bright spot on the lower left). Image Credit:HST

[/caption]

The discovery of dark energy, a mysterious force that is accelerating the expansion of the universe, was based on observations of type 1a supernovae, and these stellar explosions have long been used as “standard candles” for measuring the expansion. But not all type 1A supernovae are created equal. A new study reveals sources of variability in these supernovae, and to accurately probe the nature of dark energy and determine if it is constant or variable over time, scientists will have to find a way to measure cosmic distances with much greater precision than they have in the past.

“As we begin the next generation of cosmology experiments, we will want to use type 1a supernovae as very sensitive measures of distance,” said lead author Daniel Kasen, of a study published in Nature this week. “We know they are not all the same brightness, and we have ways of correcting for that, but we need to know if there are systematic differences that would bias the distance measurements. So this study explored what causes those differences in brightness.”

Kasen and his coauthors–Fritz Röpke of the Max Planck Institute for Astrophysics in Garching, Germany, and Stan Woosley, professor of astronomy and astrophysics at UC Santa Cruz–used supercomputers to run dozens of simulations of type 1a supernovae. The results indicate that much of the diversity observed in these supernovae is due to the chaotic nature of the processes involved and the resulting asymmetry of the explosions.

For the most part, this variability would not produce systematic errors in measurement studies as long as researchers use large numbers of observations and apply the standard corrections, Kasen said. The study did find a small but potentially worrisome effect that could result from systematic differences in the chemical compositions of stars at different times in the history of the universe. But researchers can use the computer models to further characterize this effect and develop corrections for it.

A type 1a supernova occurs when a white dwarf star acquires additional mass by siphoning matter away from a companion star. When it reaches a critical mass–1.4 times the mass of the Sun, packed into an object the size of the Earth–the heat and pressure in the center of the star spark a runaway nuclear fusion reaction, and the white dwarf explodes. Since the initial conditions are about the same in all cases, these supernovae tend to have the same luminosity, and their “light curves” (how the luminosity changes over time) are predictable.

Some are intrinsically brighter than others, but these flare and fade more slowly, and this correlation between the brightness and the width of the light curve allows astronomers to apply a correction to standardize their observations. So astronomers can measure the light curve of a type 1a supernova, calculate its intrinsic brightness, and then determine how far away it is, since the apparent brightness diminishes with distance (just as a candle appears dimmer at a distance than it does up close).

The computer models used to simulate these supernovae in the new study are based on current theoretical understanding of how and where the ignition process begins inside the white dwarf and where it makes the transition from slow-burning combustion to explosive detonation.

The simulations showed that the asymmetry of the explosions is a key factor determining the brightness of type 1a supernovae. “The reason these supernovae are not all the same brightness is closely tied to this breaking of spherical symmetry,” Kasen said.

The dominant source of variability is the synthesis of new elements during the explosions, which is sensitive to differences in the geometry of the first sparks that ignite a thermonuclear runaway in the simmering core of the white dwarf. Nickel-56 is especially important, because the radioactive decay of this unstable isotope creates the afterglow that astronomers are able to observe for months or even years after the explosion.

“The decay of nickel-56 is what powers the light curve. The explosion is over in a matter of seconds, so what we see is the result of how the nickel heats the debris and how the debris radiates light,” Kasen said.

Kasen developed the computer code to simulate this radiative transfer process, using output from the simulated explosions to produce visualizations that can be compared directly to astronomical observations of supernovae.

The good news is that the variability seen in the computer models agrees with observations of type 1a supernovae. “Most importantly, the width and peak luminosity of the light curve are correlated in a way that agrees with what observers have found. So the models are consistent with the observations on which the discovery of dark energy was based,” Woosley said.

Another source of variability is that these asymmetric explosions look different when viewed at different angles. This can account for differences in brightness of as much as 20 percent, Kasen said, but the effect is random and creates scatter in the measurements that can be statistically reduced by observing large numbers of supernovae.

The potential for systematic bias comes primarily from variation in the initial chemical composition of the white dwarf star. Heavier elements are synthesized during supernova explosions, and debris from those explosions is incorporated into new stars. As a result, stars formed recently are likely to contain more heavy elements (higher “metallicity,” in astronomers’ terminology) than stars formed in the distant past.

“That’s the kind of thing we expect to evolve over time, so if you look at distant stars corresponding to much earlier times in the history of the universe, they would tend to have lower metallicity,” Kasen said. “When we calculated the effect of this in our models, we found that the resulting errors in distance measurements would be on the order of 2 percent or less.”

Further studies using computer simulations will enable researchers to characterize the effects of such variations in more detail and limit their impact on future dark-energy experiments, which might require a level of precision that would make errors of 2 percent unacceptable.

Source: EurekAlert

Titan’s Desert Sports a Surprising, Powerful Storm

CREDIT: Gemini Observatory/AURA/Henry Roe, Lowell Observatory/Emily Schaller, Insitute for Astronomy, University of Hawai‘i

[/caption]

Titan is just fun. Seems like every other week, another fascinating tidbit emerges about how interesting Saturn’s famous moon really is — and how compellingly similar to Earth.

A United States team of astronomers is releasing this image today in Nature. It’s an adaptive optics peek at a storm over the wild object’s parched, dry desert.

The new research, to be published in the August 13 issue of the journal, announces the discovery of significant cloud formation (about three million square kilometers, or 1.16 million square miles) within the moon’s tropical zone near its equator. Prior to this event (in April 2008) it was not known whether significant cloud formation was possible in Titan’s tropical regions. This activity in Titan’s tropics and mid-latitudes also seems to have triggered subsequent cloud development at the moon’s south pole where it was considered improbable due to the Sun’s seasonal angle relative to Titan.

The evidence comes from astronomers using the Gemini North telescope and NASA’s Infrared Telescope Facility (IRTF), both on Hawaii’s Mauna Kea.

“We obtain frequent observations with IRTF giving us a ‘weather report’ of sorts for Titan. When the IRTF observations indicate that cloud activity has increased, we are able to trigger the next night on the Gemini telescope to determine where on Titan the clouds are located,” said team member Emily Schaller, who was at the University of Hawai‘i Institute for Astronomy when this work was done.

Saturn and Titan (six o'clock). CREDIT: Gemini Observatory/AURA/Henry Roe, Lowell Observatory/Emily Schaller, Insitute for Astronomy, University of Hawai‘i
Saturn and Titan (six o'clock). CREDIT: Gemini Observatory/AURA/Henry Roe, Lowell Observatory/Emily Schaller, Insitute for Astronomy, University of Hawai‘i

Titan, the solar system’s second largest moon, has received considerable attention by scientists since NASA’s Cassini mission deployed the Huygens probe that descended through the moon’s atmosphere in January 2005. During its descent, the probe’s cameras revealed small-scale channels and what appear to be stream beds in the equatorial regions that seemed to contradict atmospheric models predicting extremely dry desert-like conditions near the equator. Until now these erosional (fluvial) features have been explained by the possibility of liquid methane seeping out of the ground.

“In April 2008 we observed what was a global event that shows how storm activity in one region can trigger clouds, and probably rainfall, over arid regions, such as the tropics where Huygens landed,” said team member Henry Roe, an astronomer at Lowell Observatory. “Of course these rain showers are not liquid water like here on Earth, but are instead made of liquid methane. Just like the streambeds and channels that are carved by liquid water on Earth, we see features on Titan that have been created by flowing liquid methane.”

Unlike the Earth, on Titan, where the temperature is hundreds of degrees below freezing, methane (or natural gas) is a liquid and it the dominant driver of the moon’s weather and surface erosion. Any water on Titan is frozen on or below the moon’s surface and resemble rocks or boulders on Titan’s surface.

Mid-latitude and polar cloud formations have been bserved for many years (by this team and others) but the combination of extensive monitoring at the IRTF with rapid follow-up using Gemini allowed the team to capture the process as it unfolded near the equator. The team monitored Titan on 138 nights over 2.2 years and during that time cloud cover was well under one percent. Then, mid-April of 2008, just after team member and Ph.D. candidate Schaller had handed in her doctoral dissertation focusing on Titan’s minimal cloud cover she noticed the dramatic increase in cloud cover.

During this three-week episode clouds forming at about 30 degrees south latitude were observed, followed several days later by clouds closer to the equator and at the moon’s south pole. The apparent connection between the cloud formations leads to the possibility that cloud formation in one area of the moon can instigate clouds in other areas by a process known as atmospheric teleconnections. This same phenomena occurs in the Earth’s atmosphere and is caused by what are called planetary Rossby waves which are well understood.

The high-resolution Gemini images of Titan were all obtained with adaptive optics technology which uses a deformable mirror to remove distortions to light caused by the Earth’s atmosphere and produce images showing remarkable detail in the tiny disk of the moon.

“Without this technology this discovery would be impossible from the surface of the Earth,” said Schaller. Currently the Cassini spacecraft is orbiting Saturn but only flies by Titan once every 6 weeks or so. This makes continuous ground-based monitoring important for studying features like these with shorter periods on the order of 3-weeks like this storm.

Further detail about the lead image: Gemini North adaptive optics image of Titan showing storm feature (bright area). Titan is about 0.8 arcsecond across in this 2.12 micron near-infrared image obtained on April 14, 2008 (UTC). CREDIT: Gemini Observatory/AURA/Henry Roe, Lowell Observatory/Emily Schaller, Insitute for Astronomy, University of Hawai‘i

Source: Gemini. Other information available through the University of Hawaii, the National Science Foundation (NSF), Lowell Observatory in Flagstaff, Arizona and, of course, Nature.